Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

Authors

DOI:

https://doi.org/10.3989/mc.2018.00717

Keywords:

Concrete, Mechanical properties, Microstructure, Mixture proportion, Characterization

Abstract


Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

Downloads

Download data is not yet available.

References

Abo Dhaheer, M.S.; Al-Rubaye; M.M.; Alyhya, W.S.; Karihaloo, B.L.; Kulasegaram, S. (2015) Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: mix design procedure. J. Sustain. Cem. Mater. 5[4], 199–216.

Abo Dhaheer, M.S.; Al-Rubaye; M.M.; Alyhya, W.S.; Karihaloo, B.L.; Kulasegaram, S. (2015) Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: experimental validation. J. Sustain. Cem. Mater. 5[4], 217–232.

Cifuentes, H.; Karihaloo, B.L. (2013) Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests. Constr. Build. Mater. 48, 548–553. https://doi.org/10.1016/j.conbuildmat.2013.07.062

Hu, X.Z.; Wittmann, F.H. (1992) Fracture energy and fracture process zone. Mater. Struct. 25[6], 319–326. https://doi.org/10.1007/BF02472590

Abdalla, H.M.; Karihaloo, B.L. (2003) Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests. Mag. Concr. Res. 55[2], 133–141. https://doi.org/10.1680/macr.2003.55.2.133

Karihaloo, B.L.; Abdalla, H.M.; Imjai, T. (2003) A simple method for determining the true specific fracture energy of concrete. Mag. Concr. Res. 55[5], 471–481. https://doi.org/10.1680/macr.2003.55.5.471

Karihaloo, B.L.; Ghanbari, A. (2012) Mix proportioning of self-compacting high- and ultra-high-performance concretes with and without steel fibres. Mag. Concr. Res. 64[12], 1089–1100. https://doi.org/10.1680/macr.11.00190

RILEM (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18[4], 287–290. https://doi.org/10.1007/BF02472918

Guinea, G.V.; Planas, J.; Elices, M. (1992) Measurement of the fracture energy using three-point bend tests: Part 1-Influence of experimental procedures. Mater. Struct. 25[4], 212–218. https://doi.org/10.1007/BF02473065

Planas, J.; Elices, M.; Guinea, G.V. (1992) Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation. Mater. Struct. 25[5], 305–312. https://doi.org/10.1007/BF02472671

Elices, M.; Guinea, G.V.; Planas, J. (1992) Measurement of the fracture energy using three-point bend tests: Part 3-Influence of cutting the P-d tail. Mater. Struct. 25[6], 327–334. https://doi.org/10.1007/BF02472591

Cifuentes, H.; Alcalde, M.; Medina, F. (2013) Measuring the size-independent fracture energy of concrete. Strain 49[1], 54–59. https://doi.org/10.1111/str.12012

Murthy, A.R.; Karihaloo, B.L.; Iyer, N.R.; Raghu Prasad, B.K. (2013) Determination of size-independent specific fracture energy of concrete mixes by two methods. Cem. Concr. Res. 50, 19–25. https://doi.org/10.1016/j.cemconres.2013.03.015

Pavía, S.; Aly, M. (2016) Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s) mortars. Mater. Construcc. 66[324], e104. https://doi.org/10.3989/mc.2016.01716

Deeb, R.; Karihaloo, B.L. (2013) Mix proportioning of selfcompacting normal and high-strength concretes. Mag. Concr. Res. 65[9], 546–556. https://doi.org/10.1680/macr.12.00164

Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E.F. (2014) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration. Mater. Construcc. 64 [315], e025. https://doi.org/10.3989/mc.2014.04813

Rozas, F.; Castillo, A.; Martínez, I.; Castellote, M. (2015) Guidelines for assessing the valorization of a waste into cementitious material: dredged sediment for production of self compacting concrete. Mater. Construcc. 65 [319], e057. https://doi.org/10.3989/mc.2015.10613

Ince, C.; Derogar, S.; Michelitsch, T.M. (2015) Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars. Mater. Construcc. 65 [318], e056. https://doi.org/10.3989/mc.2015.05214

Ruiz, G.; Zhang, X.X.; Yu, R.C.; Porras, R.; Poveda, E.; Del Viso, J.R. (2011) Effect of loading rate on fracture energy of high-strength concrete. Strain 47[6], 518–524. https://doi.org/10.1111/j.1475-1305.2010.00719.x

Zhang, X.; Ruiz, G.; Yu, R.C.; Poveda, E.; Porras, R. (2012) Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC2010. Constr. Build. Mater. 30, 301–308. https://doi.org/10.1016/j.conbuildmat.2011.11.037

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414

EFNARC (2005) The European guidelines for self-compacting concrete-specification, production and use. http://www.efnarc.org

Muralidhara, S.; Raghu Prasad, B.K.; Karihaloo, B.L.; Singh, R.K. (2011) Size-independent fracture energy in plain concrete beams using tri-linear model. Constr. Build. Mater. 25[7], 3051-3058. https://doi.org/10.1016/j.conbuildmat.2011.01.003

Alyhya, W.S.; Abo Dhaheer, M.S.; Al-Rubaye, M.M.; Karihaloo, B.L. (2016) Influence of mix composition and strength on the fracture properties of self-compacting concrete. Constr. Build. Mater. 110, 312-322. https://doi.org/10.1016/j.conbuildmat.2016.02.037

Nikbin, I.M.; Beygi, M.H.A.; Kazemi, M.T.; Vaseghi Amiri, J.; Rahmania, E.; Rabbanifara, S.; Eslamic, M. (2014) A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete. Mater. Des. 59, 199-210. https://doi.org/10.1016/j.matdes.2014.02.054

Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi Amiri, J.; Rabbanifara, S.; Rahmania, E. (2014) The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete. Cem. Concr. Res. 66, 75-90. https://doi.org/10.1016/j.cemconres.2014.06.008

Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi Amiri, J. (2013) The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater. Des. 50, 267-276. https://doi.org/10.1016/j.matdes.2013.02.018

Akçao_lu, T.; Tokyay, M.; Çelik, T. (2004) Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cem. Concr. Compos. 26[6], 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1

Vydra, V.; Trtík, K.; Vodák, F. (2012) Size independent fracture energy of concrete. Constr. Build. Mater. 26[1], 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034

Murthy, A.R.; Karihaloo, B.L.; Iyer, N.R.; Raghu Prasad, B.K. (2013) Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy. Constr. Build. Mater. 47, 1160-1166. https://doi.org/10.1016/j.conbuildmat.2013.06.004

Abdalla, H.M.; Karihaloo, B.L. (2004) A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy. Mag. Concr. Res. 56[10], 597-604. https://doi.org/10.1680/macr.2004.56.10.597

Neville, A.M. (1995) Properties of Concrete, 4th ed. Longman. London.

Hillerborg, A.; Modéer, M.; Petersson, P.E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6[6], 773-781. https://doi.org/10.1016/0008-8846(76)90007-7

Yan, A.; Wu, K.R.; Zhang, D.; Yao, W. (2001) Effect of fracture path on the fracture energy of high-strength concrete. Cem. Concr. Res. 31[11], 1601-1606. https://doi.org/10.1016/S0008-8846(01)00610-X

Published

2018-03-30

How to Cite

Cifuentes, H., Ríos, J. D., & Gómez, E. J. (2018). Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete. Materiales De Construcción, 68(329), e144. https://doi.org/10.3989/mc.2018.00717

Issue

Section

Research Articles