Influencia de la composición de la mezcla sobre la energía de fractura de hormigones autocompactantes de resistencias media y alta
DOI:
https://doi.org/10.3989/mc.2018.00717Palabras clave:
Hormigón, Propiedades mecánicas, Microestructura, Proporción de mezcla, CaracterizaciónResumen
Los hormigones autocompactantes tienen una microestructura interna inherente a su composición específica. Su mayor contenido de partículas finas, en comparación con hormigones vibrados equivalentes, provoca un comportamiento diferente en fractura que afecta a los principales parámetros de fractura. En este trabajo, se ha realizado una amplia investigación experimental del comportamiento en fractura de hormigones autocompactantes. Así, se han realizado ensayos de flexión en tres puntos para determinar sus propiedades de fractura sobre 12 hormigones autocompactantes de diferente composición, con resistencias a compresión que van desde 39 hasta 124 MPa (mayor que en otros estudios). De esta forma, se ha analizado la influencia de la dosificación del hormigón y su composición (contenido en árido grueso, relación agua-cemento y pasta-sólidos) sobre su comportamiento en fractura. Además, se ha validado, para hormigones autocompactantes, la objetividad de los resultados obtenidos mediante los dos métodos habitualmente empleados para la determinación de la energía de fractura.
Descargas
Citas
Abo Dhaheer, M.S.; Al-Rubaye; M.M.; Alyhya, W.S.; Karihaloo, B.L.; Kulasegaram, S. (2015) Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: mix design procedure. J. Sustain. Cem. Mater. 5[4], 199–216.
Abo Dhaheer, M.S.; Al-Rubaye; M.M.; Alyhya, W.S.; Karihaloo, B.L.; Kulasegaram, S. (2015) Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: experimental validation. J. Sustain. Cem. Mater. 5[4], 217–232.
Cifuentes, H.; Karihaloo, B.L. (2013) Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests. Constr. Build. Mater. 48, 548–553. https://doi.org/10.1016/j.conbuildmat.2013.07.062
Hu, X.Z.; Wittmann, F.H. (1992) Fracture energy and fracture process zone. Mater. Struct. 25[6], 319–326. https://doi.org/10.1007/BF02472590
Abdalla, H.M.; Karihaloo, B.L. (2003) Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests. Mag. Concr. Res. 55[2], 133–141. https://doi.org/10.1680/macr.2003.55.2.133
Karihaloo, B.L.; Abdalla, H.M.; Imjai, T. (2003) A simple method for determining the true specific fracture energy of concrete. Mag. Concr. Res. 55[5], 471–481. https://doi.org/10.1680/macr.2003.55.5.471
Karihaloo, B.L.; Ghanbari, A. (2012) Mix proportioning of self-compacting high- and ultra-high-performance concretes with and without steel fibres. Mag. Concr. Res. 64[12], 1089–1100. https://doi.org/10.1680/macr.11.00190
RILEM (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18[4], 287–290. https://doi.org/10.1007/BF02472918
Guinea, G.V.; Planas, J.; Elices, M. (1992) Measurement of the fracture energy using three-point bend tests: Part 1-Influence of experimental procedures. Mater. Struct. 25[4], 212–218. https://doi.org/10.1007/BF02473065
Planas, J.; Elices, M.; Guinea, G.V. (1992) Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation. Mater. Struct. 25[5], 305–312. https://doi.org/10.1007/BF02472671
Elices, M.; Guinea, G.V.; Planas, J. (1992) Measurement of the fracture energy using three-point bend tests: Part 3-Influence of cutting the P-d tail. Mater. Struct. 25[6], 327–334. https://doi.org/10.1007/BF02472591
Cifuentes, H.; Alcalde, M.; Medina, F. (2013) Measuring the size-independent fracture energy of concrete. Strain 49[1], 54–59. https://doi.org/10.1111/str.12012
Murthy, A.R.; Karihaloo, B.L.; Iyer, N.R.; Raghu Prasad, B.K. (2013) Determination of size-independent specific fracture energy of concrete mixes by two methods. Cem. Concr. Res. 50, 19–25. https://doi.org/10.1016/j.cemconres.2013.03.015
Pavía, S.; Aly, M. (2016) Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s) mortars. Mater. Construcc. 66[324], e104. https://doi.org/10.3989/mc.2016.01716
Deeb, R.; Karihaloo, B.L. (2013) Mix proportioning of selfcompacting normal and high-strength concretes. Mag. Concr. Res. 65[9], 546–556. https://doi.org/10.1680/macr.12.00164
Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E.F. (2014) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration. Mater. Construcc. 64 [315], e025. https://doi.org/10.3989/mc.2014.04813
Rozas, F.; Castillo, A.; Martínez, I.; Castellote, M. (2015) Guidelines for assessing the valorization of a waste into cementitious material: dredged sediment for production of self compacting concrete. Mater. Construcc. 65 [319], e057. https://doi.org/10.3989/mc.2015.10613
Ince, C.; Derogar, S.; Michelitsch, T.M. (2015) Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars. Mater. Construcc. 65 [318], e056. https://doi.org/10.3989/mc.2015.05214
Ruiz, G.; Zhang, X.X.; Yu, R.C.; Porras, R.; Poveda, E.; Del Viso, J.R. (2011) Effect of loading rate on fracture energy of high-strength concrete. Strain 47[6], 518–524. https://doi.org/10.1111/j.1475-1305.2010.00719.x
Zhang, X.; Ruiz, G.; Yu, R.C.; Poveda, E.; Porras, R. (2012) Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC2010. Constr. Build. Mater. 30, 301–308. https://doi.org/10.1016/j.conbuildmat.2011.11.037
Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414
EFNARC (2005) The European guidelines for self-compacting concrete-specification, production and use. http://www.efnarc.org
Muralidhara, S.; Raghu Prasad, B.K.; Karihaloo, B.L.; Singh, R.K. (2011) Size-independent fracture energy in plain concrete beams using tri-linear model. Constr. Build. Mater. 25[7], 3051-3058. https://doi.org/10.1016/j.conbuildmat.2011.01.003
Alyhya, W.S.; Abo Dhaheer, M.S.; Al-Rubaye, M.M.; Karihaloo, B.L. (2016) Influence of mix composition and strength on the fracture properties of self-compacting concrete. Constr. Build. Mater. 110, 312-322. https://doi.org/10.1016/j.conbuildmat.2016.02.037
Nikbin, I.M.; Beygi, M.H.A.; Kazemi, M.T.; Vaseghi Amiri, J.; Rahmania, E.; Rabbanifara, S.; Eslamic, M. (2014) A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete. Mater. Des. 59, 199-210. https://doi.org/10.1016/j.matdes.2014.02.054
Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi Amiri, J.; Rabbanifara, S.; Rahmania, E. (2014) The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete. Cem. Concr. Res. 66, 75-90. https://doi.org/10.1016/j.cemconres.2014.06.008
Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Vaseghi Amiri, J. (2013) The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater. Des. 50, 267-276. https://doi.org/10.1016/j.matdes.2013.02.018
Akçao_lu, T.; Tokyay, M.; Çelik, T. (2004) Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cem. Concr. Compos. 26[6], 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1
Vydra, V.; Trtík, K.; Vodák, F. (2012) Size independent fracture energy of concrete. Constr. Build. Mater. 26[1], 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034
Murthy, A.R.; Karihaloo, B.L.; Iyer, N.R.; Raghu Prasad, B.K. (2013) Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy. Constr. Build. Mater. 47, 1160-1166. https://doi.org/10.1016/j.conbuildmat.2013.06.004
Abdalla, H.M.; Karihaloo, B.L. (2004) A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy. Mag. Concr. Res. 56[10], 597-604. https://doi.org/10.1680/macr.2004.56.10.597
Neville, A.M. (1995) Properties of Concrete, 4th ed. Longman. London.
Hillerborg, A.; Modéer, M.; Petersson, P.E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6[6], 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
Yan, A.; Wu, K.R.; Zhang, D.; Yao, W. (2001) Effect of fracture path on the fracture energy of high-strength concrete. Cem. Concr. Res. 31[11], 1601-1606. https://doi.org/10.1016/S0008-8846(01)00610-X
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.