Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment
DOI:
https://doi.org/10.3989/mc.2018.13216Keywords:
Fibre reinforcement, Glass, Sulphate attack, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM)Abstract
The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability.
Downloads
References
Neville, A. (2004). The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004
Ma?olepszy, J.; Grabowska, E. (2015). Sulphate Attack Resistance of Cement with Zeolite Additive. Procedia Eng. 108, 170–176. https://doi.org/10.1016/j.proeng.2015.06.133
Muthusamy, K.; Kamaruzzaman, N.W.; Zubir, M.A.; Hussin, M.W.; Sam, A.R.M.; Budiea, A. (2015). Long Term Investigation on Sulphate Resistance of Concrete Containing Laterite Aggregate. Procedia Eng. 125, 811–817. https://doi.org/10.1016/j.proeng.2015.11.145
Piasta, W.; Marczewska, J.; Jaworska, M. (2015). Durability of Air Entrained Cement Mortars Under Combined Sulphate and Freeze-thaw Attack. Procedia Eng. 108, 55–62. https://doi.org/10.1016/j.proeng.2015.06.119
Soroushian, P.; Elzafraney, M. (2004). Damage effects on concrete performance and microstructure. Cem. Concr. Compos. 26 [7], 853–859. https://doi.org/10.1016/j.cemconcomp.2003.05.001
Ramli, M.; Kwan, W.H.; Abas, N.F. (2013). Application of non-corrosive barchip fibres for high strength concrete enhancements in aggressive environments. Composites Part B 53, 134–144. https://doi.org/10.1016/j.compositesb.2013.04.012
Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86 [1–3], 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006
Etse, G.; Caggiano, A.; Vrech, S. (2012). Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model. Int. J. Fract. 178 [1], 131–146. https://doi.org/10.1007/s10704-012-9733-z
Kang, J.; Kim, K.; Lim, Y.M.; Bolander, J. E. (2014). Modeling of fiber-reinforced cement composites: Discrete representation of fiber pullout. Intern Int. J. Solids Struct. 51 [10], 1970–1979. https://doi.org/10.1016/j.ijsolstr.2014.02.006
Lee, S.C.; Cho, J.Y.; Vecchio, F.J. (2013). Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. ACI Mater. J. 110 [4], 403–412.
Mallick, P. (2008). Fibre-Reinforced Composites: Materials Manufacturing and Design. Boca Raton: Taylor & Francis Group, Abingdon, (2008).
Axinte, E. (2011). Glasses as engineering materials: A review. Mater. Des. 32 [4], 1717–1732. https://doi.org/10.1016/j.matdes.2010.11.057
ASTM C1666/C1666M ? 08 Standard Specification for Alkali Resistant (AR) Glass Fiber for GFRC and Fiber Reinforced Concrete and Cement.
Gilbert, G.T. (2004). GFRC - 30 Years Of High Fiber Cement Composite Applications Worldwide. Special Publication 224 [1–20]. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=13404
Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. (2015). High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 73 [60–66]. https://doi.org/10.1016/j.matdes.2015.02.022
Köksal, F.; Altun, F.; Yi?it, ?.; ?ahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22 [8], 1874–1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017
Goh, K.L.; Meakin, J.R.; Hukins, D.W.L. (2010). Influence of fibre taper on the interfacial shear stress in fibre-reinforced composite materials during elastic stress transfer. Compos. Interfaces 17 [1], 74–80. https://doi.org/10.1163/092764409X12580201111665
Kwan, W.H.; Ramli, M.; Cheah, C.B. (2014). Flexural strength and impact resistance study of fibre reinforced concrete in simulated aggressive environment. Constr. Build. Mater. 63, 62–71. https://doi.org/10.1016/j.conbuildmat.2014.04.004
Liang, J.Z. (2012). Predictions of Young's modulus of short inorganic fiber reinforced polymer composites. Composites Part B 43 [4], 1763–1766. https://doi.org/10.1016/j.compositesb.2012.01.010
Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Bu, C.H. (2014). Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Constr. Build. Mater. 50, 499–507. https://doi.org/10.1016/j.conbuildmat.2013.10.016
Mohonee, V.K.; Goh, K.L. (2016). Effects of fibre–fibre interaction on stress uptake in discontinuous fibre reinforced composites. Composites Part B 86, 221–228. https://doi.org/10.1016/j.compositesb.2015.10.015
Yu, R.; van Beers,L.; Spiesz, P.; Brouwers, H.J.H. (2016). Impact resistance of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under pendulum impact loadings. Constr. Build. Mater. 107, 203–215. https://doi.org/10.1016/j.conbuildmat.2015.12.157
Barluenga, G.; Hernández-Olivares, F. (2007). Cracking control of concretes modified with short AR-glass fibers at early age. Experimental results on standard concrete and SCC. Cem. Concr. Res. 37 [12], 1624–1638. https://doi.org/10.1016/j.cemconres.2007.08.019
Messan, A.; Ienny, P.; Nectoux, D. (2011). Free and restrained early-age shrinkage of mortar: Influence of glass fiber, cellulose ether and EVA (ethylene-vinyl acetate). Cem. Concr. Compos. 33 [3], 402–410. https://doi.org/10.1016/j.cemconcomp.2010.10.019 https://doi.org/10.1016/j.cemconcomp.2010.10.019
Nourredine, A. (2011). Influence of curing conditions on durability of alkali-resistant glass fibres in cement matrix. Bull. Mater. Sci. 34 [4], 775. https://doi.org/10.1007/s12034-011-0194-1
Purnell, P.; Beddows, J. (2005). Durability and simulated ageing of new matrix glass fibre reinforced concrete. Cem. Concr. Compos. 27 [9], 875–884. https://doi.org/10.1016/j.cemconcomp.2005.04.002
Butler, M.; Mechtcherine, V.; Hempel, S. (2009). Experimental investigations on the durability of fibre-matrix interfaces in textile-reinforced concrete, Cem. Concr. Compos. 31 [4], 221–231. https://doi.org/10.1016/j.cemconcomp.2009.02.005
Ramli, M.; Kwan, W. H. (2010). Influences of Short Discrete Fibers in High Strength Concrete with Very Coarse Sand. Am. J. Applied Sci. 7 [12], 1572–1578. https://doi.org/10.3844/ajassp.2010.1572.1578
BS EN 12390-3. (2009). "Testing Hardened Concrete: Compressive Strength of Test Specimens."
Cabrera, J. G.; Lynsdale, C. J. (1988). A new gas permeameter for measuring the permeability of mortar and concrete. Mag. Concr. Res. 40 [144], 177–182. https://doi.org/10.1680/macr.1988.40.144.177
BS 1881-124. (1992). "Testing Concrete: Method for Analysis of Hardened Concrete."
Lothenbach, B.; Scrivener, K.; Hooton, R. D. (2011). Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
Yilmaz, V.; Glasser, F. (1991). "Reaction of Alkali-Resistant Glass Fibres with Cement. Part 1." Review, Assessment, and Microscopy." Glass Technol. 32, 91-98.
Purnell, P.; Short, N.; Page, C.; Majumdar, A. (2000). Microstructural observations in new matrix glass fibre reinforced cement. Cem. Concr. Res.30 [11], 1747–1753. https://doi.org/10.1016/S0008-8846(00)00407-5
B?aszczy?ski, T.; Przybylska-Fa?ek, M. (2015). Steel Fibre Reinforced Concrete as a Structural Material. Procedia Eng. 122, 282–289. https://doi.org/10.1016/j.proeng.2015.10.037
Banthia, A.; Bhargava, N. (2007). Permeability of Stressed Concrete and Role of Fiber Reinforcement. ACI Mater. J.104 [1].
Ganjian, E.; Pouya, H. S. (2009). The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Constr. Build. Mater. 23 [2], 644–652. https://doi.org/10.1016/j.conbuildmat.2008.02.009
ACI Committee 222R–01. (2001). "Protection of metals in concrete against corrosion." American Concrete Institute.
BS EN 1992-1-1:2004+A1:2014. "Eurocode 2: Design of concrete structures. General rules and rules for buildings"
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.