Recycled concrete with coarse recycled aggregate. An overview and analysis

Authors

DOI:

https://doi.org/10.3989/mc.2018.13317

Keywords:

Recycled concrete, Mechanical properties, Deformation, Shrinkage, Durability

Abstract


The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste) and consuming large volumes of natural resources. In this context, recycled concrete (RC) has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.

Downloads

Download data is not yet available.

References

United Nations, Sustainable Development Goals (SDGs): 17 goals to transform our world, (2015) 1. https://www.un.org/sustainabledevelopment/sustainable-development-goals/.

Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. (2016) Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. Constr. Build. Mater. 122, 95–109. https://doi.org/10.1016/j.conbuildmat.2016.06.050

Corinaldesi, V.; Moriconi, G. (2010) Recycling of rubble from building demolition for low-shrinkage concretes. Waste Manag. 30, 655–659. https://doi.org/10.1016/j.wasman.2009.11.026 PMid:20022737

Domingo, A.; Lázaro, C.; Gayarre, F.L.; Serrano, M.A.; López-Colina, C. (2009) Long term deformations by creep and shrinkage in recycled aggregate concrete. Mater. Struct. 43 [8], 1147–1160. https://doi.org/10.1617/s11527-009-9573-0

González-Fonteboa, B.; Martínez-Abella, F.; Herrador, M.F.; Seara-Paz, S. (2012) Structural recycled concrete: Behaviour under low loading rate. Constr. Build. Mater. 28 [1], 111–116. https://doi.org/10.1016/j.conbuildmat.2011.08.010

Manzi, S.; Mazzotti, C.; Bignozzi, M.C. (2013) Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Compos. 37, 312–318. https://doi.org/10.1016/j.cemconcomp.2013.01.003

Corinaldesi, V.; Letelier, V.; Moriconi, G. (2011) Behaviour of beam-column joints made of recycled-aggregate concrete under cyclic loading. Constr. Build. Mater. 25 [4], 1877–1882. https://doi.org/10.1016/j.conbuildmat.2010.11.072

Corinaldesi, V.; Moriconi, G. (2011) The role of industrial by-products in self-compacting concrete. Constr. Build. Mater. 25 [8], 3181–3186. https://doi.org/10.1016/j.conbuildmat.2011.03.001

González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F., Pérez-Ordó-ez, J.L. (2013) Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming. Constr. Build. Mater. 106, 480–499. https://doi.org/10.1016/j.conbuildmat.2015.12.136

Kou, S.C.; Poon, C.S.; Wan, H.W. (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr. Build. Mater. 36, 881–889. https://doi.org/10.1016/j.conbuildmat.2012.06.060

Mas, B.; Cladera, A.; Del Olmo, T.; Pitarch, F. (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr. Build. Mater. 27 [1], 612–622. https://doi.org/10.1016/j.conbuildmat.2011.06.073

Nealen, A.; Schenk, S. (1998) The influence of recycled aggregate core moisture on freshly mixed and hardened concrete properties. Darmstadt Concr. 13.

Ravindrarajah, S.R.; Tam, C.T.; Loo, Y.H. (1987) Recycled concrete as fine and coarse aggregate in concrete. Mag. Concr. Res. 39 [141], 214–220. https://doi.org/10.1680/macr.1987.39.141.214

González-Taboada, I.; González-Fonteboa, B., Martínez-Abella, F.; Carro-López, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66 [323], e089. https://doi.org/10.3989/mc.2016.06415

Corinaldesi, V. (2012) Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 35, 778–784. https://doi.org/10.1016/j.conbuildmat.2012.04.131

Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. (2004) Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 34 [6], 965–971. https://doi.org/10.1016/j.cemconres.2003.11.008

Evangelista, L.; De Brito, J. (2014) Concrete with fine recycled aggregates: A review. Eur. J. Environ. Civ. Eng. 18 [2], 129–172. https://doi.org/10.1080/19648189.2013.851038

Otsuki, N.; Miyazato, S.-I.; Yodsudjai, W. (2003) Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J. Mater. Civ. Eng. 15 [5], 443-451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)

Etxeberria, M.; Vázquez, E.; Marí, A. (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag. Concr. Res. 58 [10], 683-690. https://doi.org/10.1680/macr.2006.58.10.683

Xiao, J.; Li, W., Corr, D.J.; Shah, S.P. (2013) Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete. Cem. Concr. Res. 52, 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004

Pedro, D.; de Brito, J.; Evangelista, L. (2015) Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process. Mater. Struct. 48 [12], 3965–3978. https://doi.org/10.1617/s11527-014-0456-7

Silva, R.V.; De Brito, J.; Dhir, R.K. (2015) The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 19 [7], 825-849. https://doi.org/10.1080/19648189.2014.974831

Laserna, S.; Montero, J. (2016) Influence of natural aggregates typology on recycled concrete strength properties. Constr. Build. Mater. 115, 78-86. https://doi.org/10.1016/j.conbuildmat.2016.04.037

Silva, R. V.; Neves, R.; De Brito, J.; Dhir, R.K. (2015) Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 62, 22–32. https://doi.org/10.1016/j.cemconcomp.2015.04.017

Kovler, K.; Roussel, N. (2011) Properties of fresh and hardened concrete. Cem. Concr. Res. 41 [7], 775–792. https://doi.org/10.1016/j.cemconres.2011.03.009

Poon, C.S.; Kou, S.C.; Lam, L. (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 40 [9], 981–988. https://doi.org/10.1617/s11527-006-9192-y

Xiao, J.; Li, W.; Fan, Y.; Huang, X. (2012) An overview of study on recycled aggregate concrete in China (1996-2011). Constr. Build. Mater. 31, 364–383. https://doi.org/10.1016/j.conbuildmat.2011.12.074

Xiao, J.; Li, J.; Zhang, C. (2005) On statistical characteristics of the compressive strength of recycled aggregate concrete. Struct. Concr. 6 [4], 149-153. https://doi.org/10.1680/stco.2005.6.4.149

Pedro, D.; de Brito, J.; Evangelista, L. (2017) Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Constr. Build. Mater. 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215

Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 42 [1], 407–415. https://doi.org/10.1016/j.buildenv.2005.07.033

Duan, Z.H.; Kou, S.C.; Poon, C.S. (2013) Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. Constr. Build. Mater. 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064

Park, W.-J., Noguchi, T.; Shin, S.-H.; Oh, D.-Y. (2015) Modulus of elasticity of recycled aggregate concrete. Mag. Concr. Res. 67 [11], 585-591. https://doi.org/10.1680/macr.14.00213

Li, X. (2008) Recycling and reuse of waste concrete in China. Part I. Material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 53 [1-2], 36–44. https://doi.org/10.1016/j.resconrec.2008.09.006

Zhou, C.; Chen, Z. (2017) Mechanical properties of recycled concrete made with different types of coarse aggregate. Constr. Build. Mater. 134, 497–506. https://doi.org/10.1016/j.conbuildmat.2016.12.163

Eiras-López, J.; Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F. (2017) Bond behaviour of recycled concrete. Analysis and prediction of bond stress-slip curve. J. Mater. Civ. Eng. 29 [10].

Corinaldesi, V. (2010) Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 24 [9], 1616–1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031

de Brito, J.; Robles, R. (2010) Recycled aggregate concrete (RAC) methodology for estimating its long-term properties. Indian J. Eng. Mater. Sci. 17 [6], 449–462.

Behnood, A.; Olek, J.; Glinicki, M.A. (2015) Predicting modulus elasticity of recycled aggregate concrete using M5? model tree algorithm. Constr. Build. Mater. 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055

Silva, R.V.; De Brito, J.; Dhir, R.K. (2015) Tensile strength behaviour of recycled aggregate concrete. Constr. Build. Mater. 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034

Silva, R. V.; De Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201–217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Ravindrarajah, S.R.; Tam, C.T. (1985) Properties of concrete made with crushed concrete as coarse aggregate. Mag. Concr. Res. 37 [130]; 29-38. https://doi.org/10.1680/macr.1985.37.130.29

Etxeberria, M.; Marí, A. R.; Vázquez, E. (2007) Recycled aggregate concrete as structural material. Mater. Struct. 40 [5], 529–541. https://doi.org/10.1617/s11527-006-9161-5

González-Fonteboa, B.; Martínez-Abella, F.; Carro López, D.; Seara-Paz, S. (2011) Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate. Constr. Build. Mater. 25 [5], 2335–2342. https://doi.org/10.1016/j.conbuildmat.2010.11.031

Xiao, J.Z.; Li, J.B.; Zhang, C. (2006) On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater. Struct. 39 [6], 655–664. https://doi.org/10.1617/s11527-006-9093-0

Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33 [5], 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5

Li, J.; Xiao, H. Zhou, Y. (2009) Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Constr. Build. Mater. 23 [3], 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019

Sucic, A.; Lotfy, A. (2016) Effect of new paste volume on performance of structural concrete using coarse and granular recycled concrete aggregate of controlled quality. Constr. Build. Mater. 108, 119–128. https://doi.org/10.1016/j.conbuildmat.2015.10.064

Male?ev, M.; Radonjanin, V.; Marinkovi?, S. (2010) Recycled concrete as aggregate for structural concrete production. Sustainability. 2, 1204-1225. https://doi.org/10.3390/su2051204

Ajdukiewicz, A.; Kliszczewicz, A. (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Comp. 24 [2], 269–279. https://doi.org/10.1016/S0958-9465(01)00012-9

Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Bairagi, N.K.; Ravande, K.; Pareek, V.K. (1993) Behaviour of concrete with different proportions of natural and recycled aggregates. Resour. Conserv. Recycl. 9 [1-2], 109-126. https://doi.org/10.1016/0921-3449(93)90036-F

López, F. (2008) Influencia de la variación de los parámetros de dosificación y fabricación de hormigón reciclado estructural sobre sus propiedades físicas y mecánicas. University of Oviedo (2008).

Chakradhara Rao, M.; Bhattacharyya, S.K.; Barai, S. V. (2011) Influence of field recycled coarse aggregate on properties of concrete. Mater. Struct. 44 [1], 205–220. https://doi.org/10.1617/s11527-010-9620-x

Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. (2009) Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 23 [2], 829-836. https://doi.org/10.1016/j.conbuildmat.2008.03.006

Bhikshma, V.; Kishore, R. (2010) Development of stress - strain curves for recycled aggregate concrete. Asian J. Civ. Eng. 11 [2], 253-261.

Corinaldesi, V. (2010) Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 24 [9], 1616-1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031

Tangchirapat, W.; Buranasing, R.; Jaturapitakkul, C. (2010) Use of high fineness of fly ash to improve properties of recycled aggregate concrete. J. Mater. Civ. Eng. 22 [6], 565-571. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000054

Zilch, K.; Roos, F. (2001) An equation to estimate the modulus of elasticity of concrete with recycled aggregates. Civ. Eng. (in Ger) 76, 187–191.

Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of recycled concrete aggregate for use in BS 5328 designated mixes. Proc. Inst. Civ. Eng. Struct. Build. 134 [3], 257-274. https://doi.org/10.1680/istbu.1999.31568

Mellmann, G. (1999) Processed concrete rubble for the reuse as aggregate. Proc. Int. Semin. Exploit. Waste Concr., 171–178.

KaziKaki, M.; Harada, M., Soshiroda, T., Kubota, S.; Ikeda, T.; Kasai, Y. (1988) Strenght and elastic modulus of recycled aggregate concrete. in: 2nd Int. RILEM Symp. Demolition Reuse Concr. Mason., 565–574.

Ravindrarajah, S.R.; Loo, Y.H.; Tam, T. (1987) Recycled concrete as fine and coarse aggregates in concrete. Mag. Concr. Res. 39 [141], 214-220. https://doi.org/10.1680/macr.1987.39.141.214

Ravindrarajah, S.R.; Tam, C.T. (1985) Properties of concrete made with crushed concrete as coarse aggregate. Mag. Concr. Res. 37 [130], 29–38. https://doi.org/10.1680/macr.1985.37.130.29

Dillman, R. (1998) Concrete with recycled concrete aggregate. in: Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., 239–253.

Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of recycled concrete aggregate for use in BS 5328 designated mixes. Proc. Inst. Civ. Eng. - Struct. Build. 134 [3], 257–274. https://doi.org/10.1680/istbu.1999.31568

Spanish Ministry of public works. (2008) EHE-08. Regulation of Structural Concrete (In Spanish), Madrid (Spain).

European Committee. (2004) Eurocode 2: Design of concrete structure. Brussels (2004).

Folino, P.; Xargay, H. (2014) Recycled aggregate concrete - Mechanical behavior under uniaxial and triaxial compression. Constr. Build. Mater. 56, 21-31. https://doi.org/10.1016/j.conbuildmat.2014.01.073

Fathifazl, G.; Ghani Razaqpur, A.; Burkan Isgor, O.; Abbas, A.; Fournier, B.; Foo, S. (2011) Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 33 [10], 1026–1037. https://doi.org/10.1016/j.cemconcomp.2011.08.004

Xiao, J.; Li, J.; Zhang, C. (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35 [6], 1187–1194. https://doi.org/10.1016/j.cemconres.2004.09.020

Yang, H.; Deng, Z.; Ingham, J.M. (2016) Bond position function between corroded reinforcement and recycled aggregate concrete using beam tests. Constr. Build. Mater. 127, 518-526. https://doi.org/10.1016/j.conbuildmat.2016.10.008

Du, T.; Wang, W., Liu, Z.; Lin, H.; Guo, T. (2010) The complete stress-strain curve of recycled aggregate concrete under uniaxial compression loading. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25 [5], 862-865. https://doi.org/10.1007/s11595-010-0109-9

G, B., Y, M.; J, M. (1978) New material from concrete demolition waste. in: Bibet. Proc. Int. Conf. Use by-Products Waste Civ. Eng., Paris (in French) (1978).

Rühl, M.; Atkinson, G. (1999) The influence of recycled aggregate on the stress–strain relation of concrete. Darmstadt Concr. (1999).

Liu, Q., Xiao, J.; Sun, Z. (2011) Experimental study on the failure mechanism of recycled concrete. Cem. Concr. Res. 41 [10], 1050-1057. https://doi.org/10.1016/j.cemconres.2011.06.007

Holt, E.E. (2001) Early age autogenous shrinkage of concrete. VTT Publ., Finland, 2–184.

Sagoe-Crentsil, K.K.; Brown, T.; Taylor, A.H. (2001) Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 31 [5], 707–712. https://doi.org/10.1016/S0008-8846(00)00476-2

Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Casta-o-Tabares, J.O. (2009) Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 23 [7], 2545-2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018

Morohashi, N.; Sakurada, T.; Yanagibashi, K. (2007) Bond splitting strength of high-quality recycled coarse aggregate concrete beams. J. Asian Archit. Build. Eng. 6 [2], 331–337. https://doi.org/10.3130/jaabe.6.331

Brand, A.S.; Roesler, J.R.; Salas, A. (2015) Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Constr. Build. Mater. 79, 83–89. https://doi.org/10.1016/j.conbuildmat.2015.01.047

Seara-Paz, S.; Corinaldesi, V.; González-Fonteboa, B.; Martínez-Abella, F. (2016) Influence of recycled coarse aggregates characteristics on mechanical properties of structural concrete. Eur. J. Environ. Civ. Eng. 20 [1], s123–s139. https://doi.org/10.1080/19648189.2016.1246694

Tam, V.W.Y.; Kotrayothar, D.; Xiao, J. (2015) Long-term deformation behaviour of recycled aggregate concrete. Constr. Build. Mater. 100, 262–272. https://doi.org/10.1016/j.conbuildmat.2015.10.013

Silva, R.V.; de Brito, J.; Dhir, R.K. (2015) Prediction of the shrinkage behavior of recycled aggregate concrete: A review. Constr. Build. Mater. 77, 327–339. https://doi.org/10.1016/j.conbuildmat.2014.12.102

Eckert, M.; Oliveira, M. (2017) Mitigation of the negative effects of recycled aggregate water absorption in concrete technology. Constr. Build. Mater. 133, 416–424. https://doi.org/10.1016/j.conbuildmat.2016.12.132

Xiao, J.; Fan, Y.; Tam, V.W.Y. (2015) On creep characteristics of cement paste, mortar and recycled aggregate concrete. Eur. J. Environ. Civ. Eng. 19 [10], 1234–1252. https://doi.org/10.1080/19648189.2015.1008652

Poon, C.S.; Kou, S.C. (2004) Properties of steam cured recycled aggregate concrete. in: Sustain. Waste Manag. Recycl. Constr. Demolition Waste, 1–12. PMid:15707569

Hanif, A.; Kim, Y.; Lee, K.; Park, C.; Sim, J. (2017) Influence of cement and aggregate type on steam-cured concrete – an experimental study. Mag. Concr. Res. 69 [13], 694-702. https://doi.org/10.1680/jmacr.17.00015

Masatao, T.; Takafumi, N.; Masaki, T.; Manabu, K.; Ippei, M.; Hironori, N. (2006) Study of the application of low - quality recycled coarse aggregate to concrete structure by surface modification treatment. in: 2nd Asian Concr. Fed. Conf., Bali, Indonesia.

Gómez-Soberón, J.M.V. (2002) Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 32 [8], 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0

Andreu, G.; Miren, E. (2014) Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater. 52, 227–235. https://doi.org/10.1016/j.conbuildmat.2013.11.054

Butler, L.; West, J.S.; Tighe, S.L. (2013) Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Constr. Build. Mater. 47, 1292–1301. https://doi.org/10.1016/j.conbuildmat.2013.05.074

Nishibayashi, S.; Yamura, K. (1988) Mechanical properties and durability of concrete from recycled coarse aggregate prepared by crushing concrete. in: Proc. Second Int. RILEM Symp. Demolition Reuse Concr. Masonry, CRC Press, 652–659.

Tsujino, M.; Noguchi, T.; Tamura, M.; Kanematsu, M.; Maruyama, I.; Nagai, H. (2006) Study on the application of low-quality coarse aggregate to concrete structure by surface-modification treatment. 2nd Asian Concr. Fed. Conf., Bali, Indonesia (2006), 36–45.

Yang, Y.F.; Han, L.H.; Wu, X. (2008) Concrete shrinkage and creep in recycled aggregate concrete-filled steel tubes. Adv. Struct. Eng. 11 [4], 383–396. https://doi.org/10.1260/136943308785836772

Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. (2000) Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 33, 574–580. https://doi.org/10.1007/BF02480538

González, B.; Martínez, F. (2004) Shear strength of concrete with recycled aggregates. in: eds. Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 619–628.

González-Fonteboa, B.; Martínez-Abella, F. (2005) Hormigones con áridos reciclados: estudio de propiedades de los áridos y de las mezclas. Mater. Construcc. 55 [279], 53–66. https://doi.org/10.3989/mc.2005.v55.i279.198

Amorim, P.; de Brito, J.; Evangelista, L. (2012) Concrete Made with Coarse Concrete Aggregate: Influence of Curing on Durability. ACI Mater. J. 109 [2], 195–204.

Correia, J.R.; de Brito, J.; Pereira, A.S. (2006) Effects on concrete durability of using recycled ceramic aggregates. Mater. Struct. 39 [2], 169–177. https://doi.org/10.1617/s11527-005-9014-7

Buyle-Bodin, F.; Hadjieva-Zaharieva, R. (2002) Influence of industrially produced recycled aggregates on flow properties of concrete. Mater. Struct. Constr. 35 [8], 504-509. https://doi.org/10.1007/BF02483138

Ferreira, L.; De Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag. Concr. Res. 63 [8], 617-627. https://doi.org/10.1680/macr.2011.63.8.617

Pedro, D.; De Brito, J.; Evangelista, L. (2014) Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr. Build. Mater. 71, 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030

Pedro, D.; De Brito, J.; Evangelista, L. (2017) Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Constr. Build. Mater. 147, 803–814. https://doi.org/10.1016/j.conbuildmat.2017.05.007

Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. (2002) Relative moisture movement through recycled aggregate concrete. Mag. Concr. Res. 54 [5], 377–384. https://doi.org/10.1680/macr.2002.54.5.377

Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. (2014) Durability of Concrete with Recycled Coarse Aggregates: Influence of Superplasticizers. J. Mater. Civ. Eng. 26 [7], 6014011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000961

Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. (2013) Mechanical properties of concrete produced with recycled coarse aggregates – Influence of the use of superplasticizers. Constr. Build. Mater. 44, 101–109. https://doi.org/10.1016/j.conbuildmat.2013.03.011

Tam, V.W.Y.; Gao, X.F.; Tam, C.M. (2005) Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 35 [6], 1195–1203. https://doi.org/10.1016/j.cemconres.2004.10.025

Poon, C.-S.; Chan, D. (2007) Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 21 [1], 164–175. https://doi.org/10.1016/j.conbuildmat.2005.06.031

Kou, S.C.; Poon, C.S.; Etxeberria, M. (2011) Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cem. Concr. Compos. 33 [2], 286–291. https://doi.org/10.1016/j.cemconcomp.2010.10.003

Rao, A.; Jha, K.N.; Misra, S. (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 50 [1], 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010

Kikuchi, M.; Yasunaga, A.; Ehara, E. (1993) The total evaluation of recycled aggregate and recycled concrete. in: ed. In: Lauritzen EK (Ed.), Proc. Third Int. RILEM Symp. Demolition Reuse Concr. Mason., Odense, Denmark, 425–436.

Kimura, Y.; Imamoto, K.; Nagayama, M.; Tamura, H. (2004) High quality recycled aggregate concrete (HiRAC) processed by decompression and rapid release. in: E. In: Kashino N & Ohama Y (Ed.), Int. RILEM Symp. Environ. Mater. Syst. Sustain. Dev., College of Engineering, Nihon University, Koriyama, Japan, 163–170.

Teranishi, K, Y. Dosho, M. Narikawa, M. Kikuchi, Application of recycled aggregate concrete for structural concrete: Part 3 - Production of recycled aggregate by real-scale plant and quality of recycled aggregate concrete. in: E. In: Dhir RK, Henderson NA & Limbachiya MC (Ed.), Proc. Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., London, UK (1998), 143–156.

Ryu, J.S. (2002) An experimental study on the effect of recycled aggregate on concrete properties. Mag. Concr. Res. 54 [1], 7-12. https://doi.org/10.1680/macr.2002.54.1.7

Eguchi, K.; Teranishi, K.; Nakagome, A.; Kishimoto, H.; Shinozaki, K.; Narikawa, M. (2007) Application of recycled coarse aggregate by mixture to concrete construction. Constr. Build. Mater. 21 [7], 1542–1551. https://doi.org/10.1016/j.conbuildmat.2005.12.023

Dosho, Y. (2007) Development of a Sustainable Concrete Waste Recycling System -Application of Recycled Aggregate Concrete Produced by Aggregate Replacing Method. J. Adv. Concr. Technol. 5 [2], 27–42. https://doi.org/10.3151/jact.5.27 https://doi.org/10.3151/jact.5.27

Ridzuan, A.; Ibrahim, A.; Ismail, A.; Diah, A. (2005) Durability performance of recycled aggregate concrete. in: E. In: Dhir RK, Dyer TD & Newlands MD (Ed.), Proc. Int. Conf. Glob. Constr. Ultim. Concr. Oppor. Achiev. Sustain. Constr., London, UK, 193–202.

Kou, S.-C.; Poon, C.-S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Compos. 37, 12-19. https://doi.org/10.1016/j.cemconcomp.2012.12.011

Silva, R.V.; de Brito, J.; Neves, R.; Dhir, R.; Silva, R.V. (2015) Prediction of Chloride Ion Penetration of Recycled Aggregate Concrete. Mater. Res. 18 [2], 427–440. https://doi.org/10.1590/1516-1439.000214

Tam, V.W.Y.; Tam, C.M. (2007) Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. J. Mater. Sci. 42 [10], 3592–3602. https://doi.org/10.1007/s10853-006-0379-y

Shicong, K.; Poon, C.S. (2006) Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash. J. Wuhan Univ. Technol. Sci. Ed. 21, 130–136. https://doi.org/10.1007/BF02841223

Gonçalves, A.; Esteves, A.; Vieira, M. (2004) Influence of recycled concrete aggregates on concrete durability. in: eds. Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 554–562.

Kou, S.C.; Poon, C.S.; Dixon, C. (2007) Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. J. Mater. Civ. Eng. 19 [9], 709-711. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)

Kou, S.; Poon, C.; Lam, L.; Chan, D. (2004) Hardened properties of recycled aggregate concrete prepared with fly ash. in: eds. In: Limbachiya MC & Roberts JJ (Ed.), Proc. Int. Conf. Sustain. Waste Manag. Recycl. Challenges Oppor., London, UK, 189–197.

Kou, S.; Poon, C.; Agrela, F. (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem. Concr. Compos. 33 [8], 788–795. https://doi.org/10.1016/j.cemconcomp.2011.05.009

Moon, D.; Moon, H.; Nagataki, S.; Hisada, M.; Saeki, T. (2002) Improvement on the qualities of recycled aggregate concrete containing super fine mineral admixtures. in: E. In: Kyokai PK & Kyokai NK (Ed.), Proc. 1st Fib Congr., Osaka, Japan, 113–118. PMid:12204432

Ann, K.Y.; Moon, H.Y.; Kim, Y.B.; Ryou, J. (2008) Durability of recycled aggregate concrete using pozzolanic materials. Waste Manag. 28, 993–999. https://doi.org/10.1016/j.wasman.2007.03.003 PMid:17475467

Berndt, M.L. (2009) Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 23 [7], 2606–2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011

Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569–577. https://doi.org/10.1016/j.conbuildmat.2005.01.044

Kou, S.; Poon, C.; Chan, D. (2004) Properties of steam cured recycled aggregate fly ash concrete. in: E. In: Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 590–599.

Salem, R.M.; Burdette, E.G.; Jackson, N.M. (2003) Resistance to freezing and thawing of recycled aggregate concrete. ACI Mater. J. 100 [3], 216-221.

Yanagibashi, K.; Yonezawa, T.; Arakawa, K.; Yamada, M. (2002) A new concrete recycling technique for coarse aggregate regeneration process. in: eds. In: Dhir RK, Dyer TD & Halliday JE (Ed.), Proc. Int. Conf. Sustain. Concr. Constr., Scotland, UK, 511–522.

Merlet, J.; Pimienta, P. (1993) Mechanical and physico-chemical properties of concrete produced with coarse and fine recycled concrete aggregates. in: E. In: Lauritzen EK (Ed.), Proc. Third Int. RILEM Symp. Demolition Reuse Concr. Mason., Odense, Denmark, 400–411.

Van Acker, A. (1998) Recycling of concrete at a precast concrete plant. in: E. In: Dhir RK, Henderson NA & Limbachiya MC (Ed.), Proc. Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., London, UK, 321–332.

Hosokawa, Y. (1999) Concrete products using fine aggregate recycled from waste concrete products. in: 8th Int. Conf. Durab. Build. Mater. Components, In: Lacasse MA & Vainer DJ, Otawa, canada, 475–484.

Gokce, A.; Nagataki, S.; Saeki, T.; Hisada, M. (2004) Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete. Cem. Concr. Res. 34 [5], 799–806. https://doi.org/10.1016/j.cemconres.2003.09.014

Nagataki, S.; Lida, K. (2001) Recycling of demolished concrete. in: E. In: Malhotra VM (Ed.), Fifth CANMET/ACI Int. Conf. Recent Adv. Concr. Technol., Singapore, 1–20.

Zaharieva, R.; Buyle-Bodin, R.; Wirquin, E. (2004) Frost resistance of recycled aggregate concrete. Cem. Concr. Res. 34 [10], 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025

Al-Attar, T.S.; Al-Khateeb, A.M.; Bachai, A.H. (2006) Behavior of High Performance Concrete Exposed to Internal Sulfate Attack (Gypsum-Contaminated Aggregate). in: Earth & Sp. 2006, American Society of Civil Engineers, Reston, VA, 1–6.

Tovar-Rodríguez, G.; Barra, M.; Pialarissi, S.; Aponte, D.; Vázquez, E. (2013) Expansion of mortars with gypsum contaminated fine recycled aggregates. Constr. Build. Mater. 38, 1211–1220. https://doi.org/10.1016/j.conbuildmat.2012.09.059

Lee, S.T.; Moon, H.Y.; Swamy, R.N.; Kim, S.S.; Kim, J.P. (2005) Sulfate Attack of Mortars Containing Recycled Fine Aggregates. ACI Mater. J. 102 [4], 224–230.

Lee, S.-T.; Swamy, R.N.; Kim, S.-S.; Park, Y.-G. (2008) Durability of Mortars Made with Recycled Fine Aggregates Exposed to Sulfate Solutions. J. Mater. Civ. Eng. 20 [1], 63–70. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:1(63)

Dhir, R.; McCarthy, M.; Halliday, J.; Tang, M. (2005) ASR testing on recycled aggregates guidance on alkali limits and reactivity.

ASTM-C1260 (2014) Standard test method for potential alkali reactivity of aggregates (mortar-bar method), 5p.

Desmyter, J.; Blockmans, S. (2000) Evaluation of different measures to reduce the risk of alkali silica reaction in recycled aggregate concrete. in: Proc. 11th Int. Conf. Alkali-Aggregate React. Concr. Canada, 603–612.

Etxeberria, M.; Vázquez, E.; Vázquez, E. (2010) Reacción álcali sílice en el hormigón debido al mortero adherido del árido reciclado. Mater. Construcc. 60 [297], 47–58. https://doi.org/10.3989/mc.2010.46508

Fonseca, N.; de Brito, J.; Evangelista, L. (2011) The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Compos. 33 [6], 637–643. https://doi.org/10.1016/j.cemconcomp.2011.04.002

Lotfi, S.; Deja, J.; Rem, P.; Mróz, R.; van Roekel, E.; van der Stelt, H. (2014) Mechanical recycling of EOL concrete into high-grade aggregates. Resour. Conserv. Recycl. 87, 117–125. https://doi.org/10.1016/j.resconrec.2014.03.010

Lotfi, S.; Eggimann, M.; Wagner, E.; Mróz, R.; Deja, J. (2015) Performance of recycled aggregate concrete based on a new concrete recycling technology. Constr. Build. Mater. 95, 243–256. https://doi.org/10.1016/j.conbuildmat.2015.07.021

Poon, C.S.; Lam, C.S. (2008) The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30 [4], 283–289. https://doi.org/10.1016/j.cemconcomp.2007.10.005

Soares, D.; de Brito, J.; Ferreira, J.; Pacheco, J. (2014) Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Constr. Build. Mater. 71, 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034

Sadati, S.; Khayat, K.H. (2016) Field performance of concrete pavement incorporating recycled concrete aggregate. Constr. Build. Mater. 126, 691–700. https://doi.org/10.1016/j.conbuildmat.2016.09.087

Zaetang, Y.; Sata, V.; Wongsa, A., Chindaprasirt, P. (2016) Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Constr. Build. Mater. 111, 15–21. https://doi.org/10.1016/j.conbuildmat.2016.02.060

EN-1338 (2003) Concrete paving blocks - Requirements and test methods, 76p.

Guerra, M.; Ceia, F.; De Brito, J.; Júlio, E. (2014) Anchorage of steel rebars to recycled aggregates concrete. Constr. Build. Mater. 72, 113–123. https://doi.org/10.1016/j.conbuildmat.2014.08.081

Güneyisi, E.; Geso?lu, M.; Kareem, Q.; ?pek, S. (2016) Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete. Mater. Struct. 49 [1-2], 521–536. https://doi.org/10.1617/s11527-014-0517-y

Published

2018-06-30

How to Cite

González-Fonteboa, B., Seara-Paz, S., de Brito, J., González-Taboada, I., Martínez-Abella, F., & Vasco-Silva, R. (2018). Recycled concrete with coarse recycled aggregate. An overview and analysis. Materiales De Construcción, 68(330), e151. https://doi.org/10.3989/mc.2018.13317

Issue

Section

Research Articles