Comparative study of the influence of three types of fibre in the shrinkage of recycled mortar

Authors

  • P. Saiz-Martínez Departamento de Construcciones Arquitectónicas y su Control, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid https://orcid.org/0000-0001-8106-0432
  • D. Ferrández-Vega Grupo Sensores y Actuadores, Departamento de Tecnología de la Edificación, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid https://orcid.org/0000-0003-3842-547X
  • C. Morón-Fernández Grupo Sensores y Actuadores, Departamento de Tecnología de la Edificación, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid https://orcid.org/0000-0002-6928-5134
  • A. Payán de Tejada-Alonso Grupo Sensores y Actuadores, Departamento de Tecnología de la Edificación, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid https://orcid.org/0000-0002-0834-2561

DOI:

https://doi.org/10.3989/mc.2018.07817

Keywords:

Waste treatment, Mortar, Aggregate, Shrinkage, Fiber reinforcement

Abstract


Construction and demolition waste can be used as a substitution of natural aggregate in mortar and concrete elaboration. A poorer quality of recycled aggregates generally has negative impact on mortar properties. Shrinkage is one of the properties that experiences worse outcome due to the higher absorption of recycled aggregates. This research evaluates the potential shrinkage of mortars elaborated with recycled concrete aggregates both with and without fibres addition, as well as the relation between moisture loss and shrinkage caused by mortar drying process using a capacitive sensor of the authors’ own design. Two different mortar dosages 1:3 and 1:4 and three fiber types: polypropylene fiber, fiberglass and steel fiber, in different proportions were used. Obtained results show that the use of polypropylene fiber improves the recycled mortars performance against shrinkage in 0.2%. Moreover, a clear relation between dry shrinkage and moisture loss was observed.

Downloads

Download data is not yet available.

References

Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. http://eur-lex.europa.eu/eli/dir/ 2008/ 98/2015-07-31.

Plan Estatal Marco de Gestión de Residuos (PEMAR) 2016–2022.

González-Corominas, A.; Exteberria, M. (2016) Effects of using recycled concrete aggregates on the shrinkage of high performance concrete. Constr. Build. Mater. 115, 32–41. https://doi.org/10.1016/j.conbuildmat.2016.04.031

Ngoc Kien, B.; Tomoaki, H.T. (2017) Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Constr. Build. Mater. 148, 376-385. https://doi.org/10.1016/j.conbuildmat.2017.05.084

084.

Saiz, M.; González, M.; Fernández, F.; Rodríguez, A. (2016) Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Cleaner Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059

Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. (2013) A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 49, 384-392. https://doi.org/10.1016/j.conbuildmat.2013.08.049

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66, 321.

Spanish Ministry of Public Works. Instrucción de Hormigón Estructural EHE-08 (Spanish Structural Concrete Code). BOE 2008; 203:258e66.

González, I.; González, B.; Martínez, F.; Carro, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66, 323.

Sánchez de Juan, M. (2004) Estudio sobre la utilización de árido reciclado para la fabricación de hormigón estructural. Tesis Doctoral. E.T.S.I. Caminos, Canales y Puertos. Universidad Politécnica de Madrid.

Duan, Z.-H.; Poon, C.-S. (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 58, 19-29. https://doi.org/10.1016/j.matdes.2014.01.044

Monografía ACHE. Utilización de árido reciclado para la fabricación de hormigón estructural. Comisión 2 Grupo de Trabajo 2/5 Hormigón Reciclado. Septiembre, (2006).

Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. (2013) Use of fine recycled aggregates from a ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036

Vegas, I.; Azkarate, I.; Juarrero, A.; Frias, M. (2009) Design and performance of masonry mortars made with recycled concrete aggregates. Mater. Construcc. 59 [295], 5-18. https://doi.org/10.3989/mc.2009.44207

Saiz, P.; González, M.; Fernández, F. (2015) Characterization and influence of fine recycled aggregates on masonry mortars production. Mater. Construcc. 65, 319.

López, F.; López, I.; López, C.; Serrano, M.; Domingo, A. (2017) Influence of the Ceramic recycled aggregates in the masonry mortars properties. Constr. Build. Mater. 132, 457-461. https://doi.org/10.1016/j.conbuildmat.2016.12.021

Mu-oz, C.; Rodríguez, A.; Gutiérrez, S.; Calderón, V. (2016) Lightweight masonry mortars made with expanded clay and recycled aggregates. Constr. Build. Mater. 118, 139-145. https://doi.org/10.1016/j.conbuildmat.2016.05.065

Hewlett, P. (2004) Lea´s chemistry of cement and concrete, 4ºEd, Butterworth-Heineman, (2004).

González, A.; Etxeberria, M. (2016) Effects of using recycled aggregates on the shrinkage of high performance concrete. Constr. Build. Mater. 115, 32-41. https://doi.org/10.1016/j.conbuildmat.2016.04.031

Zhutovsky, S.; Kovler, K. (2012) Effect of internal curing on durability-related properties of high performance concrete. Cem. Concr. Res. 42, 20-26. https://doi.org/10.1016/j.cemconres.2011.07.012

Neno, C.; de Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17, 168-177. https://doi.org/10.1590/S1516-14392013005000164

Fernández, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; De Brito, J. (2016) Maximum feasible use of recycled sand¡ from construction and demolition waste for eco-mortar production- Part-I: ceramic masonry waste. J. Cleaner Prod. 87, 692-706.

Bouziadi, F.; Boulekbache, B.; Hamrat, M. (2016) The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Constr. Build. Mater. 114, 40-48. https://doi.org/10.1016/j.conbuildmat.2016.03.164

Nili, M.; Afroughsabet, V. (2010) The effects of silica fume and polypropylene fibres on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 24, 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025

Dawood, E. T. Ramli, M. (2011) High strength characteristics of cement mortar reinforces with hybrid fibres. Constr. Build. Mater. 25, 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008

Bendimerad, A. Z.; Roziere, E.; Loukili, A. (2016) Plastic shrinkage and cracking risk of recycled aggregates concrete. Constr. Build. Mater. 121, 733-745. https://doi.org/10.1016/j.conbuildmat.2016.06.056

UNE-EN 197-1. Cement - Part 1: Composition, specifications and conformity criteria for common cements. 2000.

Cement Permanent Commission. Instruction for the receipt of cement. RC-08. Ministry of Public Works and Transport. 2009.

UNE-EN 196-1. Methods of testing cement - Part 1: Determination of strength. 2005.

UNE-EN 1015-2. Methods of test for mortar for masonry - Part 2: Bulk sampling of mortars and preparation of test mortars. 1998.

UNE 80-112-89. Test methods. Cement. Determination of shrinkage and swelling in water. 1989.

UNE-EN 1015-11. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. 1999.

UNE-EN 13139. Aggregates for mortar. 2002.

UNE-EN-933-1. Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution e Sieving method. 2012.

UNE 83115. Aggregates for concrete. Determination of the coefficient of friability of the sands. 1989.

UNE-EN 1097-3. Tests for mechanical and physical properties of aggregates. Part 3: determination of loose bulk density and voids. 1999.

UNE-EN 1097-6. Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. 2014

UNE-EN-933-2. Test for geometrical properties of aggregates - Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures. 1995.

Spaeth, V.; Tegguer, A. D. (2013) Improvement of recycled concrete aggregate properties by polymer treatments. Int. J. Sustainable Built Environ. 2, 143-152. https://doi.org/10.1016/j.ijsbe.2014.03.003

Saiz Martínez, P. (2015). Utilización de arenas procedentes de Residuos de Construcción y Demolición, RCD, en la fabricación de morteros de alba-ilería. Tesis Doctoral. Escuela Técnica Superior de Edificación. Universidad Politécnica de Madrid.

Published

2018-12-30

How to Cite

Saiz-Martínez, P., Ferrández-Vega, D., Morón-Fernández, C., & Payán de Tejada-Alonso, A. (2018). Comparative study of the influence of three types of fibre in the shrinkage of recycled mortar. Materiales De Construcción, 68(332), e168. https://doi.org/10.3989/mc.2018.07817

Issue

Section

Research Articles

Most read articles by the same author(s)