Degradación de estructuras urbanas generada por crecimiento de plantas y actividad microbiana
DOI:
https://doi.org/10.3989/mc.2019.09517Palabras clave:
Hormigón, Ácidos orgánicos, Envejecimiento, Tratamiento de residuos, DurabilidadResumen
El objetivo de este estudio fue aislar microorganismos de la superficie de estructuras urbanas de concreto deterioradas y medir su capacidad para disolver in vitro muestras de concreto, basada en la liberación de elementos como el calcio y el silicio. De todos los microorganismos aislados sólo un hongo fue capaz de disminuir el pH y disolver el concreto. Este hongo fue identificado a nivel molecular como Aspergillus carbonaurius, un productor de ácido cítrico. Después de siete días de incubación, se encontró que la concentración de calcio soluble en el medio de cultivo no inoculado fue 172,3 mg/L, mientras que en el medio inoculado era de 525,0 mg/L. La concentración de silicio soluble en el medio no inoculado fue de 10,3 mg/L, mientras que en el medio inoculado fue de 50,1 mg/L. Estos hallazgos mostraron que las plantas y los microorganismos producen un efecto sinérgico que acelera el biodeterioro del concreto.
Descargas
Citas
Cwalina, B. (2008) Biodeterioration of Concrete. J. Archit. Civ. Eng. Environ. 4, 133–140.
Larreur-Cayol, S.; Bertron, A.; Escadeillas, G. (2011) Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem. Concr. Res. 41[8], 882–892, 2011. https://doi.org/10.1016/j.cemconres.2011.04.007
Warscheid, T.; Braams, J. (2000) Biodeterioration of stone: A review," Int. Biodeterior. Biodegrad. 46[4], 343–368. https://doi.org/10.1016/S0964-8305(00)00109-8
Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl. Environ. Microbiol. 73[3], 971–980. https://doi.org/10.1128/AEM.02054-06 PMid:17142362 PMCid:PMC1800771
Veniale, F.; Setti, M.; Lodola, S. (2008) Diagnóstico del deterioro de la piedra en el patrimonio construido. Datos y perspectivas. Mater. Construcción. 58, 11–32. https://doi.org/10.3989/mc.2008.v58.i289-290.85
Westall, F.; Cornel, E.J:, Southam, G.; Grassineau, N., Colas, M., Cockcell, C., Lammer, H. (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos. Trans. R. Soc. B Biol. Sci. 361[1474], 1857–1876.
Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J. A. (2006) Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci., 90[1], 58–64.
Epure, L.; Meleg, I. N.; Munteanu, C.-M.; Roban, R. D.; Moldovan, O. T. (2014) Bacterial and Fungal Diversity of Quaternary Cave Sediment Deposits. Geomicrobiol. J. 31[2] 116–127. https://doi.org/10.1080/01490451.2013.815292
Papida, S.; Murphy, W.; May, E. (2000) Enhancement of physical weathering of building stones by microbial populations. Int. Biodeterior. Biodegrad. 46[4], 305–317. https://doi.org/10.1016/S0964-8305(00)00102-5
Windt, L. de; Bertron, A.; Larreur-Cayol, S.; Escadeillas, G. (2015) Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cem. Concr. Res. 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.001
Kip, N.; Veen, J. A. van (2015) The dual role of microbes in corrosion. ISME J. 9[3], 542–551. https://doi.org/10.1038/ismej.2014.169 PMid:25259571 PMCid:PMC4331587
Gu, J. D.; Ford, T. E.; Berke, N. S.; Mitchell, R. (1998) Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41[2], 101–109. https://doi.org/10.1016/S0964-8305(98)00034-1
Giannantonio, D. J.; Kurth, J. C.; Kurtis, K. E.; Sobecky, P. A. (2009) Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeterior. Biodegrad. 63[3], 252–259. https://doi.org/10.1016/j.ibiod.2008.10.002
Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S. R. (2017) Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 149, 575–586. https://doi.org/10.1016/j.conbuildmat.2017.05.144
Wei, S.; Sanchez, M.; Trejo, D.; Gillis, C. (2010) Microbial mediated deterioration of reinforced concrete structures. Int. Biodeterior. Biodegrad. 64[8], 748–754. https://doi.org/10.1016/j.ibiod.2010.09.001
Shi, C. (2017) A review on concrete surface treatment Part I : Types and mechanisms. Constr. Build. Mater. 132[1], 578–590.
Zhang, J. L.; Wu, R.S; Li, M.Y; Zhong, J.Y; Deng, X.; Liu, B.; Han, X.N.; Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. 100[15], 6661–6670. https://doi.org/10.1007/s00253-016-7382-2
Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. (2013) Microbiologically induced deterioration of concrete - A review. Brazilian J. Microbiol. 44[4], 1001–1007. https://doi.org/10.1590/S1517-83822014005000006 PMid:24688488 PMCid:PMC3958164
Rajakaruna, P. S.; Wilber, G. G. (2010). Microbial deterioration of concrete infrastructure. MSc Thesis, Oklahoma State University, Stillwater, Oklahoma.
Sun, X.; Jiang, G.; Bond, P. L.; Keller, J.; Yuan, Z. (2015) A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Res. 70, 279–287. https://doi.org/10.1016/j.watres.2014.12.020 PMid:25543238
Bertron, A. (2014) Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Mater. Struct. 47[11], 1787–1806. https://doi.org/10.1617/s11527-014-0433-1
Rodrigues, F.; Carvalho, M. T.; Evangelista, L.; De Brito, J. (2013) Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 52, 438–445. https://doi.org/10.1016/j.jclepro.2013.02.023
Mejía, E.; Navarro, P.; Vargas, C.; Tobón, J. I.; Osorio, W. (2016) Characterization of construction and demolition waste in order to obtain Ca and Si using a citric acid treatment Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA. 83, 94–101. https://doi.org/10.15446/dyna.v83n199.56394
Angulo, S. C.; Ulsen, C.; John, V. M.; Kahn, H.; Cincotto, M. A. (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from Sao Paulo, Brazil. Waste Manag. 29[2], 721–730. https://doi.org/10.1016/j.wasman.2008.07.009 PMid:18926692
Limbachiya, M. C.; Marrocchino, E.; Koulouris, A. (2007) Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Manag. 27[2], 201–208. https://doi.org/10.1016/j.wasman.2006.01.005 PMid:16574393
Sanchez-Silva, M.; Rosowsky, D. V. (2008) Biodeterioration of Construction Materials: State of the Art and Future Challenges. J. Mater. Civ. Eng. 20[5] 352–365. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352)
Gong, C.; Zhou, X.; Ji, L.; Dai, W.; Lu, L.; Cheng, X. (2018) Effects of limestone powders on pore structure and physiological characteristics of planting concrete with sulfoaluminate cement. 162[20], 314–320. https://doi.org/10.1016/j.conbuildmat.2017.10.012
Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 109[16], 6241–6246. https://doi.org/10.1073/pnas.1117018109 PMid:22454494 PMCid:PMC3341068
Mejía, E.; Tobón, J. I.; Osorno, L.; Osorio, W. (2015) Mineralogical characterization of urban construction and demolition waste : potential use as a nutrient source for degraded soils. WIT Transactions on Ecology and The Environment. 194, 399–413. https://doi.org/10.2495/SC150351
Tanaca, H. K.; Dias, C. M. R.; Gaylarde, C. C.; John, V. M.; Shirakawa, M. A. (2011) Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones. Build. Environ. 46[2], 324–330. https://doi.org/10.1016/j.buildenv.2010.07.025
Tobón, J. I.; Angel, E.; Gomez, V. (2006) Medellín behavior of concretes elaborated with different stony aggregates of the surroundings of medellin. DYNA. 74[152], 251–262.
Puente, M. E.; Li, C. Y.; Bashan, Y. (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6[5], 643–650. https://doi.org/10.1055/s-2004-821101 PMid:15375736
Collignon, C.; Uroz, S.; Turpault, M. P.; Frey-Klett, P. (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol. Biochem. 43[10], 2012–2022. https://doi.org/10.1016/j.soilbio.2011.05.008
Lian, B.; Chen, Y.; Zhu, L.; Yang, R. (2008) Effect of Microbial Weathering on Carbonate Rocks. Earth Sci. Front. 15[6]; 90–99. https://doi.org/10.1016/S1872-5791(09)60009-9
Uroz, S.; Oger, P.; Lepleux, C.; Collignon, C.; Frey-Klett, P.; Turpault, M. P. (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res. Microbiol. 162[9], 821–831. https://doi.org/10.1016/j.resmic.2011.01.013
Lepleux, C.; Uroz, S.; Collignon, C.; Churin, J. L.; Turpault, M. P.; Frey-Klett, P. (2013) A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil. Res. Microbiol. 164[7],. 729–739. https://doi.org/10.1016/j.resmic.2013.03.022 PMid:23583355
Wallace, K. J. (2007) Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139[ 3–4], 235–246. https://doi.org/10.1016/j.biocon.2007.07.015
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.