Degradación de estructuras urbanas generada por crecimiento de plantas y actividad microbiana

Autores/as

DOI:

https://doi.org/10.3989/mc.2019.09517

Palabras clave:

Hormigón, Ácidos orgánicos, Envejecimiento, Tratamiento de residuos, Durabilidad

Resumen


El objetivo de este estudio fue aislar microorganismos de la superficie de estructuras urbanas de concreto deterioradas y medir su capacidad para disolver in vitro muestras de concreto, basada en la liberación de elementos como el calcio y el silicio. De todos los microorganismos aislados sólo un hongo fue capaz de disminuir el pH y disolver el concreto. Este hongo fue identificado a nivel molecular como Aspergillus carbonaurius, un productor de ácido cítrico. Después de siete días de incubación, se encontró que la concentración de calcio soluble en el medio de cultivo no inoculado fue 172,3 mg/L, mientras que en el medio inoculado era de 525,0 mg/L. La concentración de silicio soluble en el medio no inoculado fue de 10,3 mg/L, mientras que en el medio inoculado fue de 50,1 mg/L. Estos hallazgos mostraron que las plantas y los microorganismos producen un efecto sinérgico que acelera el biodeterioro del concreto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Cwalina, B. (2008) Biodeterioration of Concrete. J. Archit. Civ. Eng. Environ. 4, 133–140.

Larreur-Cayol, S.; Bertron, A.; Escadeillas, G. (2011) Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem. Concr. Res. 41[8], 882–892, 2011. https://doi.org/10.1016/j.cemconres.2011.04.007

Warscheid, T.; Braams, J. (2000) Biodeterioration of stone: A review," Int. Biodeterior. Biodegrad. 46[4], 343–368. https://doi.org/10.1016/S0964-8305(00)00109-8

Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl. Environ. Microbiol. 73[3], 971–980. https://doi.org/10.1128/AEM.02054-06 PMid:17142362 PMCid:PMC1800771

Veniale, F.; Setti, M.; Lodola, S. (2008) Diagnóstico del deterioro de la piedra en el patrimonio construido. Datos y perspectivas. Mater. Construcción. 58, 11–32. https://doi.org/10.3989/mc.2008.v58.i289-290.85

Westall, F.; Cornel, E.J:, Southam, G.; Grassineau, N., Colas, M., Cockcell, C., Lammer, H. (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos. Trans. R. Soc. B Biol. Sci. 361[1474], 1857–1876.

Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J. A. (2006) Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci., 90[1], 58–64.

Epure, L.; Meleg, I. N.; Munteanu, C.-M.; Roban, R. D.; Moldovan, O. T. (2014) Bacterial and Fungal Diversity of Quaternary Cave Sediment Deposits. Geomicrobiol. J. 31[2] 116–127. https://doi.org/10.1080/01490451.2013.815292

Papida, S.; Murphy, W.; May, E. (2000) Enhancement of physical weathering of building stones by microbial populations. Int. Biodeterior. Biodegrad. 46[4], 305–317. https://doi.org/10.1016/S0964-8305(00)00102-5

Windt, L. de; Bertron, A.; Larreur-Cayol, S.; Escadeillas, G. (2015) Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cem. Concr. Res. 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.001

Kip, N.; Veen, J. A. van (2015) The dual role of microbes in corrosion. ISME J. 9[3], 542–551. https://doi.org/10.1038/ismej.2014.169 PMid:25259571 PMCid:PMC4331587

Gu, J. D.; Ford, T. E.; Berke, N. S.; Mitchell, R. (1998) Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41[2], 101–109. https://doi.org/10.1016/S0964-8305(98)00034-1

Giannantonio, D. J.; Kurth, J. C.; Kurtis, K. E.; Sobecky, P. A. (2009) Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeterior. Biodegrad. 63[3], 252–259. https://doi.org/10.1016/j.ibiod.2008.10.002

Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S. R. (2017) Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 149, 575–586. https://doi.org/10.1016/j.conbuildmat.2017.05.144

Wei, S.; Sanchez, M.; Trejo, D.; Gillis, C. (2010) Microbial mediated deterioration of reinforced concrete structures. Int. Biodeterior. Biodegrad. 64[8], 748–754. https://doi.org/10.1016/j.ibiod.2010.09.001

Shi, C. (2017) A review on concrete surface treatment Part I : Types and mechanisms. Constr. Build. Mater. 132[1], 578–590.

Zhang, J. L.; Wu, R.S; Li, M.Y; Zhong, J.Y; Deng, X.; Liu, B.; Han, X.N.; Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. 100[15], 6661–6670. https://doi.org/10.1007/s00253-016-7382-2

Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. (2013) Microbiologically induced deterioration of concrete - A review. Brazilian J. Microbiol. 44[4], 1001–1007. https://doi.org/10.1590/S1517-83822014005000006 PMid:24688488 PMCid:PMC3958164

Rajakaruna, P. S.; Wilber, G. G. (2010). Microbial deterioration of concrete infrastructure. MSc Thesis, Oklahoma State University, Stillwater, Oklahoma.

Sun, X.; Jiang, G.; Bond, P. L.; Keller, J.; Yuan, Z. (2015) A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Res. 70, 279–287. https://doi.org/10.1016/j.watres.2014.12.020 PMid:25543238

Bertron, A. (2014) Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Mater. Struct. 47[11], 1787–1806. https://doi.org/10.1617/s11527-014-0433-1

Rodrigues, F.; Carvalho, M. T.; Evangelista, L.; De Brito, J. (2013) Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 52, 438–445. https://doi.org/10.1016/j.jclepro.2013.02.023

Mejía, E.; Navarro, P.; Vargas, C.; Tobón, J. I.; Osorio, W. (2016) Characterization of construction and demolition waste in order to obtain Ca and Si using a citric acid treatment Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA. 83, 94–101. https://doi.org/10.15446/dyna.v83n199.56394

Angulo, S. C.; Ulsen, C.; John, V. M.; Kahn, H.; Cincotto, M. A. (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from Sao Paulo, Brazil. Waste Manag. 29[2], 721–730. https://doi.org/10.1016/j.wasman.2008.07.009 PMid:18926692

Limbachiya, M. C.; Marrocchino, E.; Koulouris, A. (2007) Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Manag. 27[2], 201–208. https://doi.org/10.1016/j.wasman.2006.01.005 PMid:16574393

Sanchez-Silva, M.; Rosowsky, D. V. (2008) Biodeterioration of Construction Materials: State of the Art and Future Challenges. J. Mater. Civ. Eng. 20[5] 352–365. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352)

Gong, C.; Zhou, X.; Ji, L.; Dai, W.; Lu, L.; Cheng, X. (2018) Effects of limestone powders on pore structure and physiological characteristics of planting concrete with sulfoaluminate cement. 162[20], 314–320. https://doi.org/10.1016/j.conbuildmat.2017.10.012

Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 109[16], 6241–6246. https://doi.org/10.1073/pnas.1117018109 PMid:22454494 PMCid:PMC3341068

Mejía, E.; Tobón, J. I.; Osorno, L.; Osorio, W. (2015) Mineralogical characterization of urban construction and demolition waste : potential use as a nutrient source for degraded soils. WIT Transactions on Ecology and The Environment. 194, 399–413. https://doi.org/10.2495/SC150351

Tanaca, H. K.; Dias, C. M. R.; Gaylarde, C. C.; John, V. M.; Shirakawa, M. A. (2011) Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones. Build. Environ. 46[2], 324–330. https://doi.org/10.1016/j.buildenv.2010.07.025

Tobón, J. I.; Angel, E.; Gomez, V. (2006) Medellín behavior of concretes elaborated with different stony aggregates of the surroundings of medellin. DYNA. 74[152], 251–262.

Puente, M. E.; Li, C. Y.; Bashan, Y. (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6[5], 643–650. https://doi.org/10.1055/s-2004-821101 PMid:15375736

Collignon, C.; Uroz, S.; Turpault, M. P.; Frey-Klett, P. (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol. Biochem. 43[10], 2012–2022. https://doi.org/10.1016/j.soilbio.2011.05.008

Lian, B.; Chen, Y.; Zhu, L.; Yang, R. (2008) Effect of Microbial Weathering on Carbonate Rocks. Earth Sci. Front. 15[6]; 90–99. https://doi.org/10.1016/S1872-5791(09)60009-9

Uroz, S.; Oger, P.; Lepleux, C.; Collignon, C.; Frey-Klett, P.; Turpault, M. P. (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res. Microbiol. 162[9], 821–831. https://doi.org/10.1016/j.resmic.2011.01.013

Lepleux, C.; Uroz, S.; Collignon, C.; Churin, J. L.; Turpault, M. P.; Frey-Klett, P. (2013) A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil. Res. Microbiol. 164[7],. 729–739. https://doi.org/10.1016/j.resmic.2013.03.022 PMid:23583355

Wallace, K. J. (2007) Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139[ 3–4], 235–246. https://doi.org/10.1016/j.biocon.2007.07.015

Publicado

2019-03-30

Cómo citar

Mejía, E., Tobón, J. I., & Osorio, W. (2019). Degradación de estructuras urbanas generada por crecimiento de plantas y actividad microbiana. Materiales De Construcción, 69(333), e177. https://doi.org/10.3989/mc.2019.09517

Número

Sección

Artículos