Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization

Authors

DOI:

https://doi.org/10.3989/mc.2019.06618

Keywords:

Alkali-activated concrete, Binary concrete, Natural volcanic pozzolan, Granulated blast furnace slag, Mechanical and physical properties

Abstract


This article presents the physical, mechanical and microstructural characterization of an alkali-activated binary concrete (AABC) based on a natural pozzolan (NP) of volcanic origin (70%) and granulated blast furnace slag (GBFS) (30%) cured at room temperature (25°C). A solution based on the combination of NaOH and waterglass (Na2SiO3·5H2O) was employed as an alkaline activator. The concrete design was obtained using a modified version of the “absolute volume” method (ACI 211.1). The performance of the AABC was similar and even superior to that of the reference concrete (OPC); e.g., it exhibited a compressive strength of up to 43.4 MPa at 360 days. These results demonstrate that the NP has potential for use in the industrial-scale production of these types of materials in the foreseeable future.

Downloads

Download data is not yet available.

References

Davidovits, J. (1994) Properties of Geopolymer Cements. First Int. Conf. Alkaline Cem. Concr. 131-149.

Turner, L.K.; Collins, F.G. (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Provis, J.L. (2016) Alkali-activated materials. Cem. Concr. Res.

Shi, C.; Jiménez, A.F.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Van Deventer, J.S.J.; Provis, J.L. (2014) Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, (2014).

Bernal, S.A.; Provis, J.L. (2014) Durability of alkali-activated materials: Progress and perspectives. J. Am. Ceram. Soc. 97, 997-1008. https://doi.org/10.1111/jace.12831

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64, e022. https://doi.org/10.3989/mc.2014.00314

Pacheco-Torgal, F.; Labrincha, J.A.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. (2014) Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Series in Civil and Structural Engineering, (2014). https://doi.org/10.1533/9781782422884.1 PMid:25842101

Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009

Shoji, S.; Dahlgren, R.; Nanzyo, M. (1993) Terminology, Concepts and Geographic Distribution of Volcanic Ash Soils. Dev. Soil Sci. 21, 1-5. https://doi.org/10.1016/S0166-2481(08)70262-9

Pourkhorshidi, A.R.; Najimi, M.; Parhizkar, T.; Jafarpour, F.; Hillemeier, B. (2010) Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans. Cem. Concr. Compos. 32, 794-800. https://doi.org/10.1016/j.cemconcomp.2010.08.007

Takahashi, T.; Shoji, S. (2002) Distribution and classification of volcanic ash soils. Glob. Environ. Res. 6, 83-97.

Lizcano, A.; Herrera, M.C. (2006) Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. Desastres Naturales Accidentes e Infraestructura Civil 6, 167-198.

Robayo-Salazar, R.A.; Mejía de Gutiérrez, R. (2018) Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Constr. Build. Mater. 189, 109-118. https://doi.org/10.1016/j.conbuildmat.2018.08.174

Allahverdi, A.; Mehrpour, K.; Kani, E.N. (2008) Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceram. Silikaty. 52, 16-23.

Allahverdi, A.; Kani, E.N.; Yazdanipour, M. (2011) Effects of blast furnance slag on natural pozzolan- based geopolymer cement. Ceram. Silikaty. 55, 68-78.

Kani, E.N.; Allahverdi, A. (2009) Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram. Silikaty. 53, 195-204.

Kani, E.N.; Allahverdi, A.; Provis, J.L. (2017) Calorimetric study of geopolymer binders based on natural pozzolan. J. Therm. Anal. Calorim. 127, 2181-2190. https://doi.org/10.1007/s10973-016-5850-7

Kani, E.N.; Allahverdi, A. (2011) Investigating shrinkage changes of natural pozzolan based geopolymer cement paste. Iran J. Mater. Sci. Eng. 8, 50-60.

Kani, E.N.; Allahverdi, A. (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J. Mater. Sci. 44, 3088-3097. https://doi.org/10.1007/s10853-009-3411-1

Kani, E.N.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34, 25-33. https://doi.org/10.1016/j.cemconcomp.2011.07.007

Lemougna, P.N.; Chinje Melo, U.F.; Delplancke, M.P.; Rahier, H. (2014) Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram. Int. 40, 811-820. https://doi.org/10.1016/j.ceramint.2013.06.072

Lemougna, P.N.; Chinje Melo, U.F.; Delplancke, M.P.; Rahier, H. (2013) Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 48, 278-286. https://doi.org/10.1016/j.conbuildmat.2013.06.089

Lemougna, P.N.; MacKenzie, K.J.D.; Melo, U.F.C. (2011) Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 37, 3011-3018. https://doi.org/10.1016/j.ceramint.2011.05.002

Lemougna, P.N.; MacKenzie, K.J.D.; Jameson, G.N.L.; Rahier, H.; Chinje Melo, U.F. (2013) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57 Fe Mossbauer spectroscopy study. J. Mater. Sci. 48, 5280-5286. https://doi.org/10.1007/s10853-013-7319-4

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N. (2012) Oxygen and chloride permeability of alkali-activated natural pozzolan concrete. ACI Mater. J. 109, 53-61. https://doi.org/10.14359/51683570

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 33, 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2010) Geopolymer cement from alkali-activated natural pozzolans: Effect of addition of minerals. In: 2nd International Conference on Sustainable Construction Materials and Technologies. Italy.

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25, 2906-2910. https://doi.org/10.1016/j.conbuildmat.2010.12.031

Bondar, D.; Lynsdale, C.J.; Milestone, N.B. (2012) Simplified Model for Prediction of Compressive Strength of Alkali- Activated Natural Pozzolans. J. Mater. Civ. Eng. 24, 391-400. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000400

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N. (2015) Sulfate Resistance of Alkali Activated Pozzolans. Int.J. Concr. Struct. Mater. 9, 145-158. https://doi.org/10.1007/s40069-014-0093-0

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 25, 4065-4071. https://doi.org/10.1016/j.conbuildmat.2011.04.044

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Engineering Properties of Alkali Activated Natural Pozzolan Concrete. ACI Mater. J. 108, 64-72. https://doi.org/10.14359/51664217

Bondar, D.; Lynsdale, C.J.; Milestone, N.B. (2013) Alkali-Activated Natural Pozzolan Concrete as New Construction Material. ACI Mater. J. 110, 331-338. https://doi.org/10.14359/51685667

Djobo, J.N.Y.; Tchadjié, L.N.; Tchakoute, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. (2014) Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2, 387-398. https://doi.org/10.1016/j.jascer.2014.08.003

Djobo, J.N.Y.; Elimbi, A.; Dika Manga, J.; Djon Li Ndjock, I.B. (2016) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ashbased geopolymers. Constr. Build. Mater. 113, 673-681. https://doi.org/10.1016/j.conbuildmat.2016.03.104

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 6, 39106-39117. https://doi.org/10.1039/C6RA03667H

Djobo, J.N.Y.; Tchakoute, H.K.; Ranjbar, N.; Elimbi, A.; Tchadjie, L.N.; Njopwouo, D.; Biernacki, J. (2016) Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. J. Am. Ceram. Soc. 99, 3159-3166. https://doi.org/10.1111/jace.14332

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J. Mater. Sci. 51, 10301-10317. https://doi.org/10.1007/s10853-016-0257-1

Tchakouté, H.K.; Elimbi, A.; Mbey, J.A.; Sabouang, C.J.N.; Njopwouo, D. (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymers products: A comparative study. Constr. Build. Mater. 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

Tchakouté, H.K.; Mbey, J.A.; Elimbi, A.; Kenne Diffo, B.B.; Njopwouo, D. (2013) Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash. Ceram. Int. 39, 1613-1621. https://doi.org/10.1016/j.ceramint.2012.08.003

Tchakoute, H.K.; Elimbi, A.; Yanne, E.; Djangang, C.N. (2013) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem. Concr. Compos. 38, 75-81. https://doi.org/10.1016/j.cemconcomp.2013.03.010

Tchakoute, H.K.; Elimbi, A.; Kenne Diffo, B.B.; Mbey, J.A.; Njopwouo, D (2013) Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/ Na2O molar ratio of soda-volcanic ash. Ceram. Int. 39, 269-276. https://doi.org/10.1016/j.ceramint.2012.06.021

Robayo-Salazar, R.A.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321], e077. https://doi.org/10.3989/mc.2016.03615

Jafari Nadoushan, M.; Ramezanianpour, A.A. (2016) The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr. Build. Mater. 111, 337-347. https://doi.org/10.1016/j.conbuildmat.2016.02.086

Robayo-Salazar, R.A.; Mejia de Gutierrez, R.; Puertas, F. (2017) Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Constr. Build. Mater. 157, 151-160. https://doi.org/10.1016/j.conbuildmat.2017.09.092

Najimi, M.; Ghafoori, N.; Sharbaf, M. (2018) Alkaliactivated natural pozzolan/slag mortars : A parametric study. Constr. Build. Mater. 164, 625-643. https://doi.org/10.1016/j.conbuildmat.2017.12.222

Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. (2003) Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc. 86, 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31, 2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

Puertas, F. (1995) Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro. Mater. Construcc. 45, 53-64. https://doi.org/10.3989/mc.1995.v45.i239.553

Haddad, R.H.; Alshbuol, O. (2016) Production of geopolymer concrete using natural pozzolan: A parametric study. Constr. Build. Mater. 114, 699-707. https://doi.org/10.1016/j.conbuildmat.2016.04.011

Najimi, M. (2016) Alkali-Activated Natural Pozzolan/ Slag Binder for Sustainable Concrete. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2885. https:// digitalscholarship.unlv.edu/thesesdissertations/2885/

ASTM International (2017) ASTM C1157/C1157M-17, Standard Performance Specification for Hydraulic Cement.

ACI Committee 211 (2002) Standard practice for selecting proportions for normal, heavyweight, and mass concrete (ACI 211.1-91).

Fuller, W.B.; Thomson, S.E. (1907) The Laws of Proportioning Concrete. Trans. Am. Soc. Civ. Eng. ASCE Libr LIX, 67-143.

ASTM International (2015) ASTM C143/C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete.

ASTM International (2018) ASTM C39/C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

ASTM International (2014) ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression.

ASTM International (2017) ASTM C496/C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.

ASTM International (2016) ASTM C293/C293M-16, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading).

ASTM International (2013) ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.

Ibrahim, M.; Megat Johari, M.A.; Rahman, M.K.; Maslehuddin, M. (2017) Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Constr. Build. Mater. 147, 648-660. https://doi.org/10.1016/j.conbuildmat.2017.04.163

Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; MacPhee, D.E. (2011) Compatibility studies between N-AS- H and C-A-S-H gels. Study in the ternary diagram Na2OCaO- Al2O3-SiO2-H2O. Cem. Concr. Res. 41, 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006

Garcia-Lodeiro, I.; Donatello, S.; Fernández-Jiménez, A.; Palomo, A. (2016) Hydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model. Materials 9,605. https://doi.org/10.3390/ma9070605 PMid:28773728 PMCid:PMC5456877

Ortega, E.A.; Cheeseman, C.; Knight, J.; Loizidou, M. (2000) Properties of alkali-activated clinoptilolite. Cem. Concr. Res. 30, 1641-1646. https://doi.org/10.1016/S0008-8846(00)00331-8

García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. (2009) Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147-153. https://doi.org/10.1016/j.cemconres.2009.01.003

García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash-Portland cement blends. Cem. Concr. Res. 52, 112-122. https://doi.org/10.1016/j.cemconres.2013.03.022

Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 113, 783-793. https://doi.org/10.1016/j.conbuildmat.2016.03.098

Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A.; Klein, L. (2016) Alkaline Hydration of C2S and C3S. J. Am. Ceram. Soc. 99, 604-611. https://doi.org/10.1111/jace.13985

Published

2019-09-30

How to Cite

Robayo-Salazar, R., Mejía de Gutiérrez, R., & Puertas, F. (2019). Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Materiales De Construcción, 69(335), e191. https://doi.org/10.3989/mc.2019.06618

Issue

Section

Research Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>