Magnetic variation in construction steels under tensile stress. Empirical research with Helmholtz coils
DOI:
https://doi.org/10.3989/mc.2021.06020Keywords:
Magnetical properties, Steel, Tensile Strength, PermeabilityAbstract
Steel is responsible for providing resistance to flexotraction to reinforced concrete structures. Steel is responsible for providing reinforced concrete structures with a flexural strength. For this reason, it is important to study its behaviour under different tensile states. This study used measuring equipment that was able to determine variations in magnetic properties of B500-SD steel bars during standard tensile tests. The magnetic field generated by a Helmholtz coil was collected through a secondary circuit. This enables the induced electromotive force to relate with the steel deflection stages when subjected to the tests. Moreover, it was possible to determine the variation of magnetic permeability when submitting 12mm and 16mm diameter bars to different tensile states. This method could prove extremely useful in determining the tensile state of ribbed steel bars that are embedded into the concrete structure.
Downloads
References
Senobua, A. J.; Garzón, E.; Ayuso, J.; Perez, F.; Caballero, A. (2003) Characterizing of steel used in the construction of civil works in Almeria. Rev. Metal. 39, 461-468. ISSN: 1988-4222. https://doi.org/10.3989/revmetalm.2003.v39.i6.360
Wu, W.; Yin, H.; Zhang, H.; Kang, J.; Li, Y.; Dan, Y. (2018) Electrochemical investigation of corrosion of X80 steel under elastic and plastic tensile stress in CO2 environment. Metals. 8 [11], 949. https://doi.org/10.3390/met8110949
Watarai, H.; Fan, R.; Yang Liu, J.; Djauhari, J. (2018) Falling velocity magnetometry of ferromagnetic microparticles. J. Magn. Magn. Mater. 462, 22-28. https://doi.org/10.1016/j.jmmm.2018.04.045
Bao, S.; Fu, M.; Lou, H.; Bai, S. (2017) Defect identification in ferromagnetic steel based on residual magnetic field measurements. J. Magn. Magn. Mater. 441, 590-597. https://doi.org/10.1016/j.jmmm.2017.06.056
Wang, G.; Wang, X.; Liao, Y. (2019) Theoretical investigation on the ferromagnetic two-dimensional scandium monochloride sheet that has a high Curie temperature. Appl. Surf. Sci. 471, 1011-1016. https://doi.org/10.1016/j.apsusc.2018.12.109
Deng, D.; Wu, X. (2018) Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets. J. Magn. Magn. Mater. 449, 243-256. https://doi.org/10.1016/j.jmmm.2017.10.039
Petković Dejan, M.; Radić Milica, D. (2015) Generalization of Helmholtz Coil Problem. Serbian J. Electr. Engineer. 12 [3], 375-384. https://doi.org/10.2298/SJEE1503375P
Rubel Basar, Md.; Yazed Ahmad, M.; Cho, J.; Ibrahim, F. (2016) An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sen. Actuat. A: Phys. 249, 207-216. https://doi.org/10.1016/j.sna.2016.08.035
Fano, W. G.; Alonso, R.; Quintana, G. (2017) El campo magnético generado por las bobinas de Helmholtz y sus aplicaciones a calibración de sondas. Elektron. 1 [2], 91-96. https://doi.org/10.37537/rev.elektron.1.2.25.2017
Clayton, R.P. (2005) Introduction to electromagnetic compatibility (EMC), Second Edition. Hoboken, N. J. Wiley-Interscience, New Jersey, (2006).
Deng, D.; Wu, X. (2018) Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets. J. Magn. Magn. Mater. 449, 243-256. https://doi.org/10.1016/j.jmmm.2017.10.039
Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors. 15 [12], 31036-31055. https://doi.org/10.3390/s151229845 PMid:26690435 PMCid:PMC4721765
Ge, J.; Li, W.; Chen, G.; Yin, X.; Yuan, X.; Yang, W.; Liu, J.; Chen Y. (2017) Multiple type defect detection in pipe by Helmholtz electromagnetic array probe. NDT E Int. 91, 97-107. https://doi.org/10.1016/j.ndteint.2017.07.001
Suresh, V.; Abudhahir, A.; Daniel, J. (2017) Development of magnetic flux leakage measuring system for detection of defect in small diameter steam generator tube. Measurem. 95, 273-279. https://doi.org/10.1016/j.measurement.2016.10.015
Ramírez Fernández, P. (2015) Cinética de dominios de sistemas magnéticos. Aplicación al desarrollo de sensores magnéticos. Universidad Politécnica de Madrid, Tesis Doctoral.
Xiucheng, L.; Donghang, W.; Cunfu, H.; Huan, F.; Bin, W. (2018) Comparison of AC and pulsed magnetization-based elasto-magnetic methods for tensile force measurement in steel strand. Measurem. 117, 410-418. https://doi.org/10.1016/j.measurement.2017.12.033
Xiucheng, L.; Wanli, S.; Cunfu, H.; Ruihuan, Z.; Bin, W. (2018) Simultaneous quantitative prediction of tensile stress, surface hardness and case depth in medium carbon steel rods based on multifunctional magnetic testing techniques. Measurem. 128, 455-463. https://doi.org/10.1016/j.measurement.2018.04.044
Thring, C.B.; Fan, Y.; Edwards, R.S. (2016) Focused Rayleigh wave EMAT for characterisation of surfacebreaking defects. NDT E Int. 81, 20-27. https://doi.org/10.1016/j.ndteint.2016.03.002
Ashigwuike, E.C.; Ushie, O.J.; Mackay, R.; Balachandran, W. (2015) A study of the transduction mechanisms of electromagnetic acoustic transducers (EMATs) on pipe steel materials. Sen. Actuat. A: Phys. 229, 154-165. https://doi.org/10.1016/j.sna.2015.03.034
Xu, J.; Xiong, H.; Wu, X. (2011) Signal processing for the guided wave test based on the empirical mode decomposition. International Conference on Electrical and Control Engineering, 1233-1240. https://doi.org/10.1109/ICECENG.2011.6057057
Reitz, J. R.; Milford, F. J. (2001) Fundamentos de la teoría electromagnética. Editorial Alhambra, S. A. Madrid (2001).
UNE-EN ISO 6892-1:2017. (2017) Materiales metálicos. Ensayo de tracción. Parte 1: Método de ensayo a temperatura ambiente. AENOR (2017).
Suárez Guerra, F. (2013). Estudio de la rotura en barras de acero: aspectos experimentales y numéricos. Tesis Doctoral, E.T.S.I. Caminos, Canales y Puertos (UPM).
Ulaby, F. T.; Ravaioli, U. (2017) Fundamentals of Applied Electromagnetics (7th Edition). Pearson, Londres (2017).
Zhu, Z.; Sun, G.; He, C.; Liu, A. (2018) Prediction of the tensile force applied on surface-hardened steel rods based on a CDIF and PSO-optimized neural network. Meas. Sci. Technol. 29 [11], 115602. https://doi.org/10.1088/1361-6501/aadebf
Kvasnica, B.; Fabo, P. (1996) Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires. Meas. Sci. Technol. 7, 763-767. https://doi.org/10.1088/0957-0233/7/5/007
William D.; Callister, Jr. (2012) Materials Science and Engineering. An Introduction. Third Edition. Editorial Reverte, vol. 2. Barcelona (2012).
Lorenzo, L. (2017) Ciencia de Materiales. Servicio de Publicaciones, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Departamento de mecánica industrial. Universidad Politécnica de Madrid (2017).
Reina, M. (2012) Soldadura de los aceros y aplicaciones. Editorial Weldwork, S. L. 5ª Edición, Madrid (2012).
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.