Evaluation of the long-term compressive strength development of the sewage sludge ash/metakaolin-based geopolymer





Alkali-activated cement, Metakaolin, Compressive strength, Mortar, Scanning electron microscopy


This paper aimed to evaluate the long-term compressive strength development of the sewage sludge ash/metakaolin (SSA/MK)-based geopolymer. SSA/MK-based geopolymeric mortars and pastes were produced at 25ºC with different SSA contents (0 - 30 wt.%). Compressive strength tests were run within the 3-720 curing days range. A physicochemical characterisation (X-ray diffraction and scanning electron microscopy) was performed in geopolymeric pastes. All the geopolymeric mortars presented a compressive strength gain with curing time. The mortars with all the SSA evaluated contents (10, 20, 30 wt.%) developed a compressive strength over 40 MPa after 720 curing days at 25ºC. The maximum compressive strength of the mortars with SSA was approximately 61 MPa (10 wt.% of SSA), similarly to the reference mortar (100% MK-based geopolymer). The microstructure analyses showed that the SSA/MK-based geopolymer presented a dense microstructure with N-A-S-H gel formation.


Download data is not yet available.


Gagg, C.R. (2014) Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40, 114-140. https://doi.org/10.1016/j.engfailanal.2014.02.004

Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N. (2016) Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod. 136 [B] 119-132. https://doi.org/10.1016/j.jclepro.2016.04.145

Rahman, A.; Rasul, M.G.; Khan, M.M.K.; Sharma, S. (2014) Recent development on the uses of alternative fuels in cement manufacturing process. Fuel. 145, 84-99. https://doi.org/10.1016/j.fuel.2014.12.029

Zhang, Z.H.; Zhu, H.J.; Zhou, C.H.; Wang, H. (2015) Geopolymer from kaolin in China: An overview. Appl. Clay. Sci. 119 [1], 31-41. https://doi.org/10.1016/j.clay.2015.04.023

Mejía-Arcila, J.; Valencia-Saavedra, W.; Mejía de Gutiérrez, R. (2020) Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment. Mater. Construcc. 70 [340], e232. https://doi.org/10.3989/mc.2020.17419

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández- Jiménez A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Provis, J.L.; Palomo, A.; Shi, C. (2015) Advances in understanding alkali-activated materials. Cem. Concr. Res. 78 [A], 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013

Shi, C.; Jiménez, A.F.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Vásquez, A.; Cárdenas, V.; Robayo, R.A.; Mejía de Gutiérrez, R. (2015) Geopolymer based on concrete demolition waste. Adv. Powder Technol. 27 [4], 1173-1179. https://doi.org/10.1016/j.apt.2016.03.029

Part, W.K.; Ramli, M.; Cheah, C.B. (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr. Build. Mater. 77, 370-395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

Xie, T.; Ozbakkaloglu, T. (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 41 [4], 5945-5958. https://doi.org/10.1016/j.ceramint.2015.01.031

Noor-ul-Amin; Faisal, M.; Muhammad, K.; Gul, S. (2015) Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available china clay. J. Clean. Prod. 129, 491-495. https://doi.org/10.1016/j.jclepro.2016.04.024

Castaldelli, V.N.; Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. (2016) Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel. 174, 307-316. https://doi.org/10.1016/j.fuel.2016.02.020

Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Gehman, J.D.; Monzó, J.M.; Payá, J.; Borrachero M.V. (2013) Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109, 493-502. https://doi.org/10.1016/j.fuel.2013.02.053

Mellado, A.; Catalán, C.; Bouzón, N.; Borrachero, M.V.; Monzó, J.M.; Payá, J. (2014) Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv. 4, 23846-23852. https://doi.org/10.1039/C4RA03375B

Ma, C-K.; Awang, A.Z.; Omar, W. (2018) Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 186, 90-102. https://doi.org/10.1016/j.conbuildmat.2018.07.111

Payá, J.; Monzó, J.; Borrachero, M.V.; Soriano, L. (2019) Sewage sludge ash. New Trends Eco-efficient Recycl. Concr. 121-152. https://doi.org/10.1016/B978-0-08-102480-5.00005-1

Vouk, D.; Nakic, D.; Stirmer, N.; Cheeseman, C.R. (2017) Use of sewage sludge ash in cementitious materials. Rev. Adv. Mater. Sci. 49, 158-170. Retrieved from https://www.ipme.ru/e-journals/RAMS/no_24917/05_24917_nakic.pdf.

Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. (2015) The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 95, 45-54. https://doi.org/10.1016/j.jclepro.2015.02.051

Cyr, M.; Coutand, M.; Clastres, P. (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37 [8], 1278-1289. https://doi.org/10.1016/j.cemconres.2007.04.003

Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. (2015) Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 98, 767-779. https://doi.org/10.1016/j.conbuildmat.2015.08.122

Baeza-Brotons, F.; Garcés, P.; Payá, J.; Saval, J.M. (2014) Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. J. Clean. Prod. 82, 112-124. https://doi.org/10.1016/j.jclepro.2014.06.072

Chen, Z.; Poon, C.S. (2017) Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Constr. Build. Mater. 154, 791-803. https://doi.org/10.1016/j.conbuildmat.2017.08.003

Monzó, J.; Payá, J.; Borrachero, M.V.; Girbés, I. (2003) Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Manag. 23 [4], 373-381. https://doi.org/10.1016/S0956-053X(03)00034-5

Pérez-Carríon M.T.; Baeza Brotons, F.; Garcés, P.; Galao Malo, O.; Payá Bernabeu, J. (2013) Potencial use of sewage sludge ash as a fine aggregate replacement in precast concrete blocks. Dyna-Colombia. 80 [179], 142-150.

Tarrago, M.; Garcia-Valles, M.; Aly, M.H.; Martínez, S. (2017) Valorization of sludge from a wastewater treatment plant by glass-ceramic production. Ceram. Int. 43 [1], 930-937. https://doi.org/10.1016/j.ceramint.2016.10.083

Yusuf, R.O.; Noor, Z.Z.; Din, M.F.M.; Abba, A.H. (2012) Use of sewage sludge ash (SSA) in the production of cement and concrete - a review. Int. J. Glob. Environ. 12, 214. https://doi.org/10.1504/IJGENVI.2012.049382

Pérez-Carrión, M.; Baeza-Brotons, F.; Payá, J.; Saval, J.M.; Zornoza, E.; Borrachero, M.V.; Garcés, P. (2014) Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Mater. Construcc. 64 [313], e002. https://doi.org/10.3989/mc.2014.06312

Yamaguchi, N.; Ikeda, K. (2010) Preparation of geopolymeric materials from sewage sludge slag with special emphasis to the matrix compositions. J. Ceram. Soc. Japan. 118 [1374], 107-112. https://doi.org/10.2109/jcersj2.118.107

Istuque, D.B.; Reig, L.; Moraes, J.C.B.; Akasaki, J.L.; Borrachero, M.V.; Soriano, L.; Payá, J.; Malmonge, J.A.; Tashima, M.M. (2016) Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA). Mater. Lett. 180, 192-195. https://doi.org/10.1016/j.matlet.2016.05.137

Istuque, D.B.; Soriano, L.; Akasaki, J.L.; Melges, J.L.P.; Borrachero, M.V.; Monzó, J.; Payá, J.; Tashima, M. (2019) Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin. Constr. Build. Mater. 203, 95-103. https://doi.org/10.1016/j.conbuildmat.2019.01.093

Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. (2018) Metakaolin. In: Waste Supplem. Cement. Mater. Concr.: Charact. Prop. Applicat. 493-511. https://doi.org/10.1016/B978-0-08-102156-9.00015-8

UNE-EN 196-1 (2018), Methods of Testing Cement - Part 1: Determination of Strength. https://www.en-standard.eu/une-en-196-1-2018-methods-of-testing-cement-part-1-determination-of-strength/.

Fernández-Jiménez, A.; Cristelo, N.; Miranda, T.; Palomo, Á. (2017) Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200-1209. https://doi.org/10.1016/j.jclepro.2017.06.151

Ozer, I.; Soyer-Uzun, S. (2015) Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceram. Int. 41 [8], 10192-10198. https://doi.org/10.1016/j.ceramint.2015.04.125

Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. (2013) Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 83-84, 308-314. https://doi.org/10.1016/j.clay.2013.08.023

Singh, N.B.; Middendorf, B. (2020) Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455

Granizo, N.; Palomo, A.; Fernandez-Jiménez, A. (2014) Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram. Int. 40 [7], 8975-8985. https://doi.org/10.1016/j.ceramint.2014.02.071

Cheng, H.; Lin, K.L.; Cui, R.; Hwang, C.L.; Chang, Y.M.; Cheng, T.W. (2015) The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst-metakaolin based geopolymers. Constr. Build. Mater. 95, 710-720. https://doi.org/10.1016/j.conbuildmat.2015.07.028

Zhu, H.; Liang. G.; Zhang, Z.; Wu, Q.; Du, J. (2019) Partial replacement of metakaolin with thermally treated rice husk ash in metakaolin-based geopolymer. Constr. Build. Mater. 221, 527-538. https://doi.org/10.1016/j.conbuildmat.2019.06.112

Sarkar, M.; Dana, K. (2021) Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram. Int. 47 [3], 3473-3483. https://doi.org/10.1016/j.ceramint.2020.09.191

Zhang, Z.; Wang, H.; Zhu, Y.; Reid, A.; Provis, J.L.; Bullen, F. (2014) Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 88-89, 194-201. https://doi.org/10.1016/j.clay.2013.12.025

Belmokhtar, N.; Ammari, M.; Brigui, J.; Allal, B.L. (2017) Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Constr. Build. Mater. 146, 621-629. https://doi.org/10.1016/j.conbuildmat.2017.04.127

Aboulayt, A.; Jaafri, R.; Samouh, H.; Cherki, El Idrissi, A.C.; Roziere, E.; Moussa, R.; Loukili, A (2018) Stability of a new geopolymer grout: Rheological and mechanical performances of metakaolin-fly ash binary mixtures. Constr. Build. Mater. 181, 420-436. https://doi.org/10.1016/j.conbuildmat.2018.06.025

Timakul, P.; Rattanaprasit, W.; Aungkavattana, P. (2016) Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram. Int. 42 [5], 6288-6295. https://doi.org/10.1016/j.ceramint.2016.01.014

Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 114, 276-289. https://doi.org/10.1016/j.conbuildmat.2016.03.184

Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 79, 45-52. https://doi.org/10.1016/j.cemconcomp.2017.01.014

Moraes, J.C.B.; Tashima, M.M.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J. (2017) Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Constr. Build. Mater. 144, 214-224. https://doi.org/10.1016/j.conbuildmat.2017.03.166

Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W. (2019) ATR/FT-IR studies of zeolite formation during alkali-activation of metakaolin. Solid State Sci. 94, 114-119. https://doi.org/10.1016/j.solidstatesciences.2019.06.004



How to Cite

Istuque, D., Soriano, L., Borrachero, M., Payá, J., Akasaki, J., Melges, J., & Tashima, M. (2021). Evaluation of the long-term compressive strength development of the sewage sludge ash/metakaolin-based geopolymer. Materiales De Construcción, 71(343), e254. https://doi.org/10.3989/mc.2021.13220



Research Articles

Funding data

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Finance Code 001 and CAPES/DGU n. 266/12

Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers n. 14/2013, process 478057/2013-0 and 309015/ 2015-4

Most read articles by the same author(s)