Optimising processing conditions for the functionalisation of photocatalytic glazes by ZnO nanoparticle deposition

Authors

DOI:

https://doi.org/10.3989/mc.2021.04921

Keywords:

ZnO, Nanospheres, Photocatalysis, Ceramic tiles, Operation conditions

Abstract


ZnO nanospheres were synthesised and then deposited by both single- and double-fire fast processes on as-prepared ceramic substrates. The photocatalytic degradation of resazurin ink was tested under UV light. The single-fired samples did not show any evidence of photocatalytic activity because the nanoparticles melted during sintering at 1210°C. The double-fire ZnO spray-coating method successfully produced glazed materials with an active ZnO surface layer despite the high sintering temperature. The influence of experimental parameters, including the ZnO nanoparticle loading (0.03 to 1 mg/cm2) and firing temperature (650 to 800°C), were also investigated. Samples with a ZnO loading of 1 g/cm2 fired at 650°C showed the best photocatalytic activity. Increasing the temperature to 700 and 800°C led to the coalescence of ZnO nanoparticles, which reduced the photocatalytic activity.

Downloads

Download data is not yet available.

References

Berto, A.M. (2007) Ceramic tiles: Above and beyond traditional applications. J. Eur. Ceram. Soc. 27, 1607-1613.

da Silva, A.L.; Dondi, M.; Raimondo, M.; Hotza, D. (2018) Photocatalytic ceramic tiles: Challenges and technological solutions. J. Eur. Ceram. Soc. 38, 1002-1017.

Jiménez-Relinque, E.; Hingorani, R.; Rubiano, F.; Grande, M.; Castillo, Á.; Castellote, M. (2019) In situ evaluation of the NOx removal efficiency of photocatalytic pavements: statistical analysis of the relevance of exposure time and environmental variables. Environ. Sci. Pollut. Res. 26, 36088-36095.

Jimenez-Relinque, E.; Castellote, M. (2014) Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations. Environ. Sci. Pollut. Res. 21, 11198-11207.

Takeuchi, M.; Sakamoto, K.; Martra, G.; Coluccia, S.; Anpo, M. (2005) Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. J. Phys. Chem. B. 109, 15422-15428.

Watanabe, T.; Nakajima, A.; Wang, R.; Minabe, M.; Koizumi, S.; Fujishima, A.; Hashimoto, K. (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films. 351, 260-263.

Jimenez-Relinque, E.; Sapiña, M.; Nevshupa, R.; Roman, E.; Castellote, M. (2016) Photocatalytic decomposition of pollen allergenic extracts of Cupressus arizonica and Platanus hybrida. Chem. Eng. J. 286, 560-570.

Reddy, P.V.L.; Kavitha, B.; Reddy, P.A.K.; Kim, K-H. (2017) TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ. Res. 154, 296-303.

Vohra, A.; Goswami, D.; Deshpande, D.; Block, S. (2006) Enhanced photocatalytic disinfection of indoor air. Appl. Catal. B. 64, 57-65.

Jimenez-Relinque, E.; Rodriguez-Garcia, J.; Castillo, A.; Castellote, M. (2015) Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure. Cem. Concr. Res. 71, 124-131.

Banerjee, S.; Dionysiou, D.D.; Pillai, S.C. (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B. 176, 396-428.

Jimenez-Relinque, E.; Castellote, M. (2018) Hydroxyl radical and free and shallowly trapped electron generation and electron/hole recombination rates in TiO2 photocatalysis using different combinations of anatase and rutile. Appl. Catal. A. 565, 20-25.

Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 Photocatalysis: Fundamentals and Application, 1st ed., Tokyo Bkc, (1999).

Serpone, N.; Pelizzetti, E. (1989) Photocatalysis: fundamentals and applications, Wiley, New York, (1989).

Meseguer, S.; Galindo, F.; Sorlí, S.; Cargori, C.; Tena, M.; Monrós, G. (2006) Vidriados cerámicos con actividad fotoquímica: aplicación potencial a depuración ambiental. Cerámica Información. 333, 61-68.

Bianchi, C.L.; Sacchi, B.; Capelli, S.; Pirola, C.; Cerrato, G.; Morandi, S.; Capucci, V. (2018) Micro-sized TiO2 as photoactive catalyst coated on industrial porcelain grès tiles to photodegrade drugs in water. Environ. Sci. Pollut. Res. 25, 20348-20353.

Tobaldi, D.; Graziani, L.; Seabra, M.; Hennetier, L.; Ferreira, P.; Quagliarini, E.; Labrincha, J. (2017) Functionalised exposed building materials: Self-cleaning, photocatalytic and biofouling abilities. Ceram. Int. 43, 10316-10325.

Ducman, V.; Petrovič, V.; Škapin, S.D. (2013) Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceram. Int. 39, 2981-2987.

Bianchi, C.L.; Colombo, E.; Gatto, S.; Stucchi, M.; Cerrato, G.; Morandi, S.; Capucci, V. (2014) Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-grès tiles. J. Photochem. Photobiol. A. 280, 27-31.

Rego, E.; Marto, J.; São Marcos, P.; Labrincha, J. (2009) Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation. Appl. Catal. A. 355, 109-114.

São Marcos, P.; Marto, J.; Trindade, T.; Labrincha, J. (2008) Screen-printing of TiO2 photocatalytic layers on glazed ceramic tiles. J. Photochem. Photobiol. A. 197, 125-131.

Vaiano, V.; Sarno, G.; Sannino, D.; Ciambelli, P. (2015) Photocatalytic properties of TiO2-functionalized tiles: influence of ceramic substrate. Res. Chem. Intermed. 41, 7995-8007.

Kuisma, R.; Fröberg, L.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Piispanen, M.; Melamies, P.; Hautala, M.; Sjöberg, A.-M.; Hupa, L. (2007) Microstructure and cleanability of uncoated and fluoropolymer, zirconia and titania coated ceramic glazed surfaces. J. Eur. Ceram. Soc. 27, 101-108.

Määttä, J.; Piispanen, M.; Kymäläinen, H-R.; Uusi-Rauva, A.; Hurme, K-R.; Areva, S.; Sjöberg, A-M.; Hupa, L. (2007) Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles. J. Eur. Ceram. Soc. 27, 4569-4574.

Zhao, H.; Peng, C.; Wu, M.; Lv, M.; Wu, J. (2019) A crystallization method for preparation of anatase-based glass-ceramic glaze J. Eur. Ceram. Soc. 39, 1725-1729.

Tezza, V.B.; Scarpato, M.; Oliveira, L.F.S.; Bernardin, A.M. (2015) Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 276, 60-65.

Barmeh, A.; Nilforoushan, M.R.; Otroj, S. (2018) Wetting and photocatalytic properties of Ni-doped TiO2 coating on glazed ceramic tiles under visible light. Thin Solid Films. 666, 137-142.

.

Onna, D.; Fuentes, K.M.; Spedalieri, C.; Perullini, M.; Marchi, M.C.; Alvarez, F.; Candal, R.J.; Bilmes, S.A. (2018) Wettability, photoactivity, and antimicrobial activity of glazed ceramic tiles coated with titania films containing tungsten. ACS Omega. 3, 17629-17636.

da Silva, A.L.; Dondi, M.; Hotza, D. (2017) Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. Ceram. Int. 43, 11986-11991.

da Silva, A.L.; Muche, D.N.; Dey, S.; Hotza, D.; Castro, R.H. (2016) Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. Ceram. Int. 42, 5113-5122.

Gurbuz, M.; Atay, B.; Dogan, A. (2015) Synthesis of High-Temperature-Stable TiO2 and its Application on Ag+-Activated Ceramic Tile. Int. J. Appl. Ceram. Technol. 12, 426-436.

Zeng, Z.; Peng, C.; Hong, Y.; Lu, Y.; Wu, J. (2010) Fabrication of a Photocatalytic Ceramic by Doping Si-, P-, and Zr-Modified TiO2 Nanopowders in Glaze. J. Am. Ceram. Soc. 93, 2948-2951.

Shakeri, A.; Yip, D.; Badv, M.; Imani, S.M.; Sanjari, M.; Didar, T.F. (2018) Self-cleaning ceramic tiles produced via stable coating of TiO2 nanoparticles. Materials. 11, 1003.

Taurino, R.; Barbieri, L.; Bondioli, F. (2016) Surface properties of new green building material after TiO2-SiO2 coatings deposition. Ceram. Int. 42, 4866-4874.

Sciancalepore, C.; Bondioli, F. (2015) Durability of SiO2-TiO2 photocatalytic coatings on ceramic tiles. Int. J. Appl. Ceram. Technol. 12, 679-684.

Zhang, P.; Tian, J.; Xu, R.; Ma, G. (2013) Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface. Appl. Surf. Sci. 266, 141-147.

Qi, K.; Cheng, B.; Yu, J.; Ho, W. (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792-820.

Hariharan, C. (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl Catal A. 304, 55-61.

Alcaraz, L.; Jiménez-Relinque, E.; Plaza, L.; García-Díaz, I.; Castellote, M.; López, F.A. (2020) Photocatalytic Activity of ZnxMn3−xO4 Oxides and ZnO Prepared From Spent Alkaline Batteries. Front. Chem. 8, 661.

Strunk, J.; Kähler, K.; Xia, X.; Muhler, M.J.S.S. (2009) The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface science. 603, 1776-1783.

Di Mauro, A.; Fragala, M.E.; Privitera, V.; Impellizzeri, G. (2017) ZnO for application in photocatalysis: from thin films to nanostructures. Mater. Sci. Semicond. Process. 69, 44-51.

Ong, C.B.; Ng, L.Y.; Mohammad, A.W. (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Ener. Rev. 81, 536-551.

Kaushik, M.; Niranjan, R.; Thangam, R.; Madhan, B.; Pandiyarasan, V.; Ramachandran, C.; Oh, D-H.; Venkatasubbu, G.D. (2019) Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 1169-1177.

Saravanan, R.; Gupta, V.K.; Narayanan, V.; Stephen, A. (2013) Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 181, 133-141.

Marto, J.; São Marcos, P.; Trindade, T.; Labrincha, J. (2009) Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles. J. Hazard. Mater. 163, 36-42.

Singh, G.; Kumar, S.; Singh, V.; Vaish, R. (2019) Transparent ZnO crystallized glass ceramics for photocatalytic and antibacterial applications. J. Appl. Phys. 125, 175102.

Mohsin, M.; Bhatti, I.A.; Ashar, A.; Mahmood, A.; ul Hassan, Q.; Iqbal, M. (2020) Fe/ZnO@ceramic fabrication for the enhanced photocatalytic performance under solar light irradiation for dye degradation. J. Mater. Res. Technol. 9, 4218-4229.

Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. (2019) Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 476, 16-27.

Bouras, D.; Mecif, A.; Barillé, R.; Harabi, A.; Rasheed, M.; Mahdjoub, A.; Zaabat, M. (2018) Cu:ZnO deposited on porous ceramic substrates by a simple thermal method for photocatalytic application. Ceram. Int. 44, 21546-21555.

Romero, M.; Pérez, J. (2015) Relation between the microstructure and technological properties of porcelain stoneware. A review. Mater. Construcc. 65, e065.

Guzmán-Carrillo, H.; Rivera-Muñoz, E.; Cayetano-Castro, N.; Herrera-Basurto, R.; Barquera-Bibiano, Z.; Mercader-Trejo, F.; Manzano-Ramírez, A. (2017) Facile control of ZnO nanostructures by varying molar concentration of zinc acetate. Mater. Res. Bull. 90, 138-144.

Mills, A.; Hepburn, J.; Hazafy, D.; O’Rourke, C.; Krysa, J.; Baudys, M.; Zlamal, M.; Bartkova, H.; Hill, C.E.; Winn, K.R.; Simonsen, M.E.; Søgaard, E.G.; Pillai, S.C.; Leyland, N.S.; Fagan, R.; Neumann, F.; Lampe, C.; Graumann, T. (2013) A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. J. Photochem. Photobiol. A. 272, 18-20.

Jimenez-Relinque, E.; Castellote, M. (2019) Rapid assessment of the photocatalytic activity in construction materials: Pros and cons of reductive inks and oxidative fluorescence probes versus standardized NOx testing. Catal. Today. 358, 164-171.

Zita, J.; Krýsa, J.; Mills, A. (2009) Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. J. Photochem. Photobiol. A. 203, 119-124.

Mills, A.; Wells, N.; O’Rourke, C. (2017) Probing the activities of UV and visible-light absorbing photocatalyst powders using a resazurin-based photocatalyst activity indicator ink (Rz Paii). J. Photochem. Photobiol. A. 338, 123-133.

Mills, A.; Wells, N.; O’Rourke, C. (2014) Correlation between ΔAbs, ΔRGB (red) and stearic acid destruction rates using commercial self-cleaning glass as the photocatalyst. Catal. Today. 230, 245-249.

Jimenez-Relinque, E.; Castellote, M. (2019) Quick assessment of the photocatalytic activity of TiO2 construction materials by nitroblue tetrazolium (NBT) ink. Constr. Build. Mater. 214, 1-8.

Ehrt, D.; Flügel, S. (2011) Properties of zinc silicate glasses and melts. J. Mater. Sci. Eng. A. 1, 312.

Calas, G.; Cormier, L.; Galoisy, L.; Jollivet, P. (2002) Structure-property relationships in multicomponent oxide glasses. C. R. Chim. 5, 831-843.

Published

2021-09-24

How to Cite

Guzmán-Carrillo, H. ., Jiménez Relinque, E. ., Manzano-Ramírez, A. ., Castellote, M. ., & Romero-Pérez, M. . (2021). Optimising processing conditions for the functionalisation of photocatalytic glazes by ZnO nanoparticle deposition. Materiales De Construcción, 71(344), e261. https://doi.org/10.3989/mc.2021.04921

Issue

Section

Research Articles