Heterogeneous photocatalysis on construction materials: effect of catalyst properties on the efficiency for degrading NOx and self cleaning
DOI:
https://doi.org/10.3989/mc.2014.06713Keywords:
TiO2, Optical, Crystalline and microstructure properties, NOx removal, Self cleaning, Rhodamine B, Tobacco extract, Construction materialsAbstract
This paper analyzes the effect of some properties of different catalysts on the photocatalytic activity. The efficiency has been determined for two different processes: NOx abatement and self-cleaning for Rhodamine B and tobacco extract being, the TiO2 based photocatalyst, supported as coatings on white mortar. Eight different catalysts were tested, seven commercial ones and one home-made catalyst with improved visible light absorption properties. Additionally, some of them were submitted to exposition to water and/or calcinations to alter their physical properties. A kinetic approach was used to evaluate the photocatalytic activity, being the first reaction constant (for NO) and just empirical constants (for self-cleaning) the parameters used for the comparison of the different materials. As a result, the efficiency, even for ranking, is dependent on the type of contaminant used in the experiment. In general, NO oxidation and tobacco followed similar trends while no clear relations were found for Rhodamine B.
Downloads
References
Fujishima, A.; Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37–38. http://dx.doi.org/10.1038/238037a0 PMid:12635268
Wrighton, M.S.; Ellis, A.B.; Wolczanski, P.T.; Morse D.L.; Abrahamson, H.B.; Ginley, D.S. (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774. http://dx.doi.org/10.1021/ja00426a017
Stirini A.; Cassese L.; Schiavi L. (2005). Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental 61, 90–97. http://dx.doi.org/10.1016/j.apcatb.2005.04.009
Demeestere K.; Dewulf J.; Witte B.D.; Baeldens A.; Langenhove H.V. (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Building and Environment 43, 406–414. http://dx.doi.org/10.1016/j.buildenv.2007.01.016
Maury A.; Demeestere K.; De Belie N.; Mäntylä T.; Levänen E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential, Building and Environment 45, 832–838. http://dx.doi.org/10.1016/j.buildenv.2009.09.003
Cassar L. (2004) Photocatalysis of cementitious materials: Clean buildings and clean air. Materials Research Society 29, 328–331.
Hüsken G.; Hunger M.; Brouwers H.J.H. (2009) Experimental study of photocatalytic concrete products for air purification. Building and Environment 44, 2463–2474. http://dx.doi.org/10.1016/j.buildenv.2009.04.010
Bengtsson, N.; Castellote, M. (2010) Photocatalytic Activity for NO degradation by construction materials: Parametric study and multivariable correlations. Journal of Advanced Oxidation Technology, 13, 341–349.
De Melo J.V.S.; Trichês G. (2012) Evaluation of the influence of environmental conditions on the efficiency of photocatalytic coatings in the degradation of nitrogen oxides (NOx). Building and Environment, 49, 117–123. http://dx.doi.org/10.1016/j.buildenv.2011.09.016
Peruchon, L.; Puzenat, E.; Herrmann, J.M.; Guillard, C. (2009) Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors Photochemistry and Photobiology A: Chemistry, 8, 1040–1046.
Ruot, B.; Plassais, A.; Olive, F.; Guillot, L.; Bonafous, L. (2009) TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a Rhodamine B-based colourimetric test, Solar Energy 83, 1794–1801. http://dx.doi.org/10.1016/j.solener.2009.05.017
Sapiña, M.; Jimenez-Relinque, E.; Castellote, M. (2013) Controlling the Levels of Airborne Pollen: Can Heterogeneous Photocatalysis Help?, Environ. Sci. Technol. 47, 11711?11716. http://dx.doi.org/10.1021/es402467x PMid:24063577
Folli, A.; Pochard, I.; Nonat, A.; Jakobsen, U.H.; Shepherd, A.M.; Macphee, D.E. (2010) Engineering Photocatalytic Cements Understanding TiO2 Surface Chemistry to Control and Modulate Photocatalytic Performances, J. Am. Ceram. Soc. 93, [10] 3360–3369. http://dx.doi.org/10.1111/j.1551-2916.2010.03838.x
Lucas, S.S.; Ferreira, V.M.; Barroso de Aguiar, J.L. (2013) Incorporation of titanium dioxide nanoparticles in mortars –Influence of microstructure in the hardened state properties and photocatalytic activity, Cem. Concr. Res. 43, 112–120. http://dx.doi.org/10.1016/j.cemconres.2012.09.007
Diamanti, M.V.; Lollini, F.; Pedeferri,M.P.; Bertolini, L. (2013) Mutual interactions between carbonation and titanium dioxide photoactivity in concrete, Building and Environment 62, 174e181.
Brus, L. (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409. http://dx.doi.org/10.1063/1.447218
Brus, L. (1986) Electronic wave functions in semiconductor clusters: experiment and theory. Phys. Chem. 90, [12] 2555–2560. http://dx.doi.org/10.1021/j100403a003
Rino, J.P.; Studart, N. (1999) Structural correlations in titanium dioxide. Phys. Rev. B 59, 6643–6649. http://dx.doi.org/10.1103/PhysRevB.59.6643
Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305–4310. http://dx.doi.org/10.1021/j100300a021
Kormann, C.; Bahnemann, D.W.; Hoffmann, M.R. (1988) Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196–5201. http://dx.doi.org/10.1021/j100329a027
Kavan, L.; Stoto, T.; Gratzel, M.; Fitzmaurice, D.; Shklover, V. (1993) Quantum-size effects in nanocrystaline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3. J. Phys. Chem. 97, (37) 9493–9498. http://dx.doi.org/10.1021/j100139a038
Serpone, N.; Lawless, D.; Khairatdinov, R.; (1995) Size Effects on the Photophysical Properties of Colloidal Anatase TiO2Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?. J. Phys. Chem. 99, 16646–16654. http://dx.doi.org/10.1021/j100045a026
Tanaka, K.; Lapule, M.F.V.; Hisanaga, T. (1991) Effect of crystallinity of TiO2on its photocatalytic action. Chem. Phys.Lett. 187, 73–76. http://dx.doi.org/10.1016/0009-2614(91)90486-S
Maira, A.J.; Yeung, K.L.; Lee, C.Y.; Yue, P.L.; Chan, C.K.; (2000) Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2Catalysts. J. Catal. 192, 185–196. http://dx.doi.org/10.1006/jcat.2000.2838
Almquist, C.B.; Biswas, P. (2002) Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J. Catal. 212, 145–156. http://dx.doi.org/10.1006/jcat.2002.3783
Byrne, J.A.; Eggins, B.R.; Dunlop, P.S.M.; Linquette-Mailley, S. (1998) The effect of hole acceptors on the photocurrent response of particulate TiO2 anodes. Analyst 123, 2007–2012. http://dx.doi.org/10.1039/a803885f
Jang, H.D.; Kim, S.J.; Kim, S.K. (2001) Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Nanoparticle Res. 3, 141–147. http://dx.doi.org/10.1023/A:1017948330363
Nam, H.J.; Amemniya, T.; Murabayashi, M.; Itoh, K. (2004) Photocatalytic Activity of Sol?Gel TiO2 Thin Films on Various Kinds of Glass Substrates: The Effects of Na+ and Primary Particle Size. J. Phys. Chem. B 108, 8254–8259. http://dx.doi.org/10.1021/jp037170t
Zhang, Z.; Wang, C.C.; Zakaria, R.; Ying, J.Y. (1998) role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871–10878. http://dx.doi.org/10.1021/jp982948+
Xu, N.; Shi, Z.; Fan, Y.; Dong, J.; Shi, J.; Hu, M.Z.C. (1999) Effects of Particle Size of TiO2 on Photocatalytic Degradation of Methylene Blue in Aqueous Suspensions. Ind. Eng. Chem. Res. 38, 373–379. http://dx.doi.org/10.1021/ie980378u
Gerischer, H. (1995) Photocatalysis in aqueous solution with small TiO2 particles and the dependence of the quantum yield on particle size and light intensity. Electrochim. Acta, 40, 1277–1281. http://dx.doi.org/10.1016/0013-4686(95)00058-M
Grela, M.A.; Colussi, A.J. (1996) Kinetics of Stochastic Charge Transfer and Recombination Events in Semiconductor Colloids. Relevance to Photocatalysis Efficiency. J. Phys. Chem. 100, 18214–18221. http://dx.doi.org/10.1021/jp961936q
Lin, H.; Huang, C.P.; Li, W.; Ni, C.; Ismat Shah, S.; Tseng, Y. (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Applied Catalysis B: Environmental, 68 1. http://dx.doi.org/10.1016/j.apcatb.2006.07.018
Folli, A.; Pade, C.; Hansen, T.B.; De Marco, T.; Macphee, D.E. (2012) TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry, Cem. Concr. Res, 42, 539–548. http://dx.doi.org/10.1016/j.cemconres.2011.12.001
Puddu, V.; Choi, H.; Dionysiou, D.D.; Li Puma, G. (2010) TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Applied Catalysis B: Environmental, 94, 211–218. http://dx.doi.org/10.1016/j.apcatb.2009.08.003
Bengtsson, N.; Castellote, M.; López-Muñoz, M.; Cerro, L. (2009) Preparation of Co-doped TiO2 for Photocatalytic Degradation of NOx in Air under Visible Light. Journal of Advanced Oxidation Technologies, 12, 55–64.
G.F.A. Kortum, (1969) Reflectance Spectroscopy: Principles, Methods, Applications, New York. http://dx.doi.org/10.1007/978-3-642-88071-1 PMid:5392451
Augugliario, V.; Kisch, H.; Loddo, V.; López-Muñoz, M.; Márquez-Álvarez, C.; Palmisano, G.; Palmisano, F. Parrino, F.; Yurdakal. S. (2008) Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide: 2. Intrinsic and surface features of catalysts. Applied Catalysis A: General, 349, 189–197. http://dx.doi.org/10.1016/j.apcata.2008.07.038
ISO 22197-1: Fine ceramics (advanced ceramics, advanced technical ceramics)–Test method for air-purification performance of semiconducting photocatalytic materials–Part 1: Removal of nitric oxide, 2007.
UNI 11259: Determinazione dell'attività fotocatalitica de leganti idraulici–Metodo della rodamina 2008.
Luo, Y.; Tai, W.S.; Seo, H.O.; Kim, K.; Kim, M.J.; Dey, N.K.; Kim, Y.D.; Choi, K.H.; Lim, D. (2010) Adsorption and Photocatalytic Decompositon of Toluene on TiO2 Surfaces. Catalysis Letters, 138, 76–81. http://dx.doi.org/10.1007/s10562-010-0369-1
Monticone, S.; Tufeu, R.; Kanaev, A.V.; Scolan, E.; Sanchez, C. (2000) Quantum size effect in TiO2 nanoparticles: does it exist?, Applied Surface Science, 162–163, 565–570. http://dx.doi.org/10.1016/S0169-4332(00)00251-8
Perez-Estrada, L.A.; Aguera, A.; Hernando, M.D.; Malato, S.; Fernandez, A. (2008) AR Photo degradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products. Chemosphere 70, 2068–2075. http://dx.doi.org/10.1016/j.chemosphere.2007.09.008 PMid:17959225
Fu, H.B.; Zhang, S.C.; Xu, T.G.; Zhu, Y.F.; Chen, J.M. (2008) Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol, 42, 2085–2091. http://dx.doi.org/10.1021/es702495w PMid:18409641
Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye, J Nanopart Res, 15, 1669. http://dx.doi.org/10.1007/s11051-013-1669-3
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.