Experimental analysis and design strength models adopted by international guides for FRP-confined concrete columns subjected to axial compression

Authors

DOI:

https://doi.org/10.3989/mc.2021.11521

Keywords:

Concrete, Composite materials, Compressive strength, Confinement, Structural strengthening

Abstract


Carbon fiber jacketing is an efficient technique for increasing the strength and strain capacity of concrete circular and square section columns subjected to axial load, although confinement efficiency decreases for rectangular cross-section members. The research project BIA 2016-80310-P includes an experimental program on intermediate-size plain concrete specimens strengthened with carbon fiber jackets, mostly with square and rectangular cross-sections. The results, alongside others with similar characteristics from two databases published, are compared to predictions of four international guides. The incidence of the key parameters in the experimental results is analyzed, such as the aspect ratio of the section, the effective strain in FRP jacket attained at failure or the rounded corner radius. As a result, two efficiency strain factors are proposed, one for circular and another for rectangular specimens. The predictions contained in certain guides, based on a simple linear design-model, are improved by using the proposed efficiency strain factor for rectangular sections.

Downloads

Download data is not yet available.

References

Siddika, A.; Al Mamun, M.A.; Ferdous, W.; Alyousef, R. (2020) Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Eng. Fail. Anal. 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480

De Lorenzis, L.; Tepfers, R. (2003) Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites. J. Comp. Construc. 7, 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)

Ozbakkaloglu, T.; Lim, J.C. (2013) Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Compos. Part B. Eng. 55, 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025

.4.Mirmiran, A.; Shahawy, M.; Samaan, M.; El Echary, H.; Mastrapa, J.C.; Pico, O. (1998) Effect of column parameters on FRP-confined concrete. J. Compos Constr. 2 [4], 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)

Ilki, A.; Kumbasar, N. (2003) Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections. J. Earthq. Eng. 7 [03], 381-406. https://doi.org/10.1080/13632460309350455

Tao, Z.; Yu, Q.; Zhong, Y-Z. (2008) Compressive behaviour of CFRP-confined rectangular concrete columns. Mag. Concr. Res. 60 [10], 735-745. https://doi.org/10.1680/macr.2007.00115

Pham, T.M.; Hadi, M.N. (2014) Stress prediction model for FRP confined rectangular concrete columns with rounded corners. J. Comp. Construc. 18 [1], 04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000407

De Diego, A.; Arteaga, A.; Fernández, J. (2019) Strengthening of square concrete columns with composite materials. Investigation on the FRP jacket ultimate strain. Compos. Part B. Eng. 162, 454-460. https://doi.org/10.1016/j.compositesb.2019.01.017

Nisticò, N.; Monti, G. (2013) RC square sections confined by FRP: Analytical prediction of peak strength. Compos. Part B. Eng. 45 [1], 127-137. https://doi.org/10.1016/j.compositesb.2012.09.041

Spoelstra, M.R.; Monti, G. (1999) FRP-confined concrete model. J. Comp. Construc. 3 [3], 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)

Lin, G.; Teng, J.G. (2020) Advanced stress-strain model for FRP-confined concrete in square columns. Compos. Part B. Eng. 197, 108149. https://doi.org/10.1016/j.compositesb.2020.108149

Shayanfar, J.; Barros, J.; Rezazadeh, M. (2021) Generalized Analysis-oriented model of FRP confined concrete circular columns. Compos. Struct. 270, 114026. https://doi.org/10.1016/j.compstruct.2021.114026

American Concrete Institute (2017) ACI-440.2R-17, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, Farmington Hills, Michigan.

Concrete Society (2012) TR55 Technical Report Design guidance for strengthening concrete structures using fibre composite materials, 3rd edition, UK.

Fédération internationale du béton (2019) fib Bulletin 90, Externally bonded FRP reinforcement for RC structures. fib, Lausanne, Switzerland.

National Research Council, Advisory Committee on Technical Recommendations for Construction (2013) CNR-DT200_R1. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures, Italy.

Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22, 1149-1186. https://doi.org/10.1177/0731684403035429

Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. (2009) Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13, 269-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012

Published

2021-11-12

How to Cite

Gutiérrez, J. ., Martínez, S. ., de Diego, A. ., Castro, V. ., & Echevarría, L. . (2021). Experimental analysis and design strength models adopted by international guides for FRP-confined concrete columns subjected to axial compression. Materiales De Construcción, 71(344), e266. https://doi.org/10.3989/mc.2021.11521

Issue

Section

Research Articles

Funding data

Agencia Estatal de Investigación
Grant numbers BIA2016-80310-P

European Regional Development Fund
Grant numbers BIA2016-80310-P

Ministerio de Ciencia e Innovación
Grant numbers BES2017-080647

European Social Fund
Grant numbers BES2017-080647

Consejo Superior de Investigaciones Científicas
Grant numbers PIE-202060E267