Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads


  • E. Sevillano Department of Structural Mechanics. Technical University of Madrid
  • R. Sun Department of Structural Mechanics. Technical University of Madrid
  • R. Perera Department of Structural Mechanics. Technical University of Madrid
  • A. Arteaga Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • A. de Diego Eduardo Torroja Institute for Construction Science, IETcc-CSIC
  • D. Cisneros Eduardo Torroja Institute for Construction Science, IETcc-CSIC



Composite, Fibre reinforcement, Concrete, Polymer, Mechanical properties


The development of monitoring technologies particularly suitable to be used with novel CFRP strengthening techniques has gained great attention in recent years. However, in spite of the high performance of these advanced composite materials in the strengthening and repairing of structures in service, they are usually associated with brittle and sudden failure mainly caused by debonding phenomena, originated either at the CFRP-plate end or at the intermediate areas in the vicinity of flexural cracks in the RC beam. Thus, it is highly recommended for these structures to be monitored in order to ensure their integrity while in service. Specifically, the feasibility of smart sensing technologies such as Fiber Bragg Grating (FBG) sensors and piezo-impedance transducers (PZT) has been studied. To the knowledge of the authors, none serious study has been carried out until now concerned to the topic of damage detection due to debonding in rehabilitated structures with CFRP composites.


Download data is not yet available.


1. Sohn, H.; Farrar, C.R.; Hemez, F.M.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. (2004) A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS.

2. Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. (2002) CFRP strengthened RC structures. 1st Ed. West Sussex: John Wiley and Sons.

3. Bank, L.C. (2006) Composites for construction: structural design with CFRP materials. 1st Ed. West Sussex: John Wiley and Sons.

4. Balaguru, P.; Nanni, A.; Giancaspro, J. (2009) CFRP composites for reinforced and prestressed concrete structures. A guide to fundamentals and design for repair and retrofit. 1st Ed. Taylor and Francis, New York and London.

5. Perera, R.; Sevillano, E.; Arteaga, A.; De Diego, A. (2014) Identification of intermediate debonding damage in CFRPplated RC beams based on multi-objective particle swarm optimization without updated baseline model. Compos. Part B Eng. 62, 205-217.

6. Attari, N.; Amziane, S.; Chemrouk, M. (2010) Flexural strengthening of concrete beams using CFRP, GCFRP and hybrid CFRP sheets. Constr. Build. Mat. 37, 746-757.

7. Dong, J.; Wang, Q.; Guan, Z. (2013) Structural behaviour of RC beams with external flexural and flexural-shear strengthening by CFRP sheets. Compos. Part B Eng. 44, 604-612.

8. El Maaddawy, T.; Soudki, K. (2008) Strengthening of reinforced concrete slabs with mechanically-anchored unbounded CFRP systems. Constr. Build. Mater. 22, 444-455.

9. Yang, Z.J.; Chen, J.F.; Proverbs, D. (2003) Finite element modelling of concrete cover separation failure in CFRP plated RC beams. Constr. Build. Mater. 17 [1], 3-13.

10. Pesic, N.; Pilakoutas, K. (2003) Concrete beams with externally bonded flexural CFRP-reinforcement: analytical investigation of debonding failure. Compos. Part B Eng. 34 [4], 327-338.

11. Sebastian, W.M. (2002) Significance of midspan debonding failure in CFRP-plated concrete beams. J. Struct. Eng. 127 [7], 792-798.

12. Rahimi, A.; Hutchinson, A. (2001) Concrete Beams Strengthened with Externally Bonded CFRP Plates. J. Compos. Constr. 5 [1], 44-56.

13. Yao, J.; Teng, J.G.; Lam, L. (2005) Experimental study on intermediate crack debonding in CFRP-strengthened RC flexural members. Adv. Struct. Eng. 8 [4], 365-396.

14. Ascione, L.; Feo, L. (2000) Modeling of composite/concrete interface of RC beams strengthened with composite laminates. Compos. Part B Eng. 31 [6-7], 535-40.

15. Liu, S.T.; Oehlers, D.J.; Seracino, R. (2011) Study of intermediate crack debonding in adhesively plated beams. J. Compos. Constr. 11 [2], 175-183.

16. Sun, R.; Sevillano, E.; Perera, R. (2015) A discrete spectral model for intermediate crack debonding in CFRPstrengthened RC beams. Compos. Part B Eng. 69, 562-575.

17. Chen, G.M.; Teng, J.G.; Chen, J.F. (2011) Finite-element modelling of intermediate crack debonding in CFRPplated RC beams. J. Compos. Contr. 15 [3], 339-353.

18. Leo, D.J. (2007) Engineering analysis of smart material systems, John Wiley & Sons.

19. Glisic, B.; Inaudi, D. (2007) Fibre optic methods for structural health monitoring, John Wiley and Sons.

20. Todd, M.D.; Nichols, J.M.; Trickey, S.T. (2007) Bragg grating-based fibre optic sensors in structural health monitoring. Philos. T. Roy. Soc. A 365 [1851], 317-344. PMid:17255042

21. Giurgiutiu, V. (2008) Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Inc.

22. Fritzen, C.P.; Kraemer, P. (2009) Self-diagnosis of smart structures based on dynamical properties. Mech. Syst. Signal Pr. 23 [6], 1830-1845.

23. Sierra-Pérez, J.; Güemes, A.; Mújica, L.E.; (2013) Damage detection by using FBGs and strain field pattern recognition techniques. Smart Mater. Struct. 22, 025011 10.

24. Zhou, Z.; Graver, T.W.; Hsu, L.; Ou, J.P. (2003) Techniques of Advanced FBG sensors: fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges. Pac. Sci. Rev. 5, 116-121.

25. Milojevic, A.; Tomic, M.; Pavlovic, N. (2012) Application of FBG sensors in smart railway. XV International Scientific-Expert Conference on Railways, Nis, Serbia.

26. Murawski, L.; Opoka, S.; Ostachowicz, W.; Wandowski, T.; Malinowski, P. (2011) Practical application of SHM system based on FBG sensors for offshore platform. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium.

27. Takeda, N. (2008) Fiber optic sensor-based SHM technologies for aerospace applications in Japan. Proceedings of SPIE, 6933, 693302 13.

28. Guo, H.; Xiao, G.; Mrad, N.; Yao, J. (2011) Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors, 11, 3687-3705. PMid:22163816 PMCid:PMC3231328

29. Giurgiutiu, V. (2008) Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Inc.

30. Saafi, M.; Sayyah, T. (2001) Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers. Compos. Part B Eng. 32, 333-342.

31. Giurgiutiu, V.; Reynolds, A.; Rogers, C.A. (1999) Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints. J. Intel. Mat. Syst. Str.

32. Giurgiutiu, V.; Harries, K.; Petrou, M.; Bost, J.; Quattlebaum, J.B. (2003) Disbond detection with piezoelectriz wafer active sensors in RC structures strengthened with CFRP composite overlays. Esarth. Eng. Eng. Vib. 2 [2].

33. Liang, C.; Sun, F.P.; Rogers, C.A. (1994) Coupled electro-mechanical analysis of adaptive material systems determination of the actuator power consumption and system energy transfer. J. Intel. Mat. Syst. Str. 5, 12-20.

34. Park, G.; Farrar, C.R.; Rutherford, A.C.; Robertson, A.C. (2006) Piezoelectric active sensor self-diagnosis using electric admittance measurements. J. Vib. Acoust. 128, 469-476.

35. Yang, Y.; Divsholli, B.S. (2010) Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring. Sensors, 10, 11644-11661. PMid:22163548 PMCid:PMC3231059

36. Peairs, D.M.; Tarazaga, P.A.; Inman, D.J. (2006) A study on the correlation between PZT and MFC resonance peaks and adequate damage detection frequency intervals using the impedance method. International Conference on Noise & Vibration Engineering (ISMA), Leuven, Belgium.



How to Cite

Sevillano, E., Sun, R., Perera, R., Arteaga, A., de Diego, A., & Cisneros, D. (2016). Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads. Materiales De Construcción, 66(322), e088.



Research Articles