Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states





HPFRC, Nanoadditives, Sulphate, Chloride, Cracking


This paper studies the durability of Ultra High Performance Fibre Reinforced Concrete (UHPFRC) with high Blast Furnace Slag content (BFS) and nanoadditives such as crystalline admixture (CA), alumina nanofibres (ANF) and cellulose nanocrystals (CNC), exposed to different aggressive environmental conditions: 1) three aggressive media: a) deionized water (dw), b) sulphate rich solution (ss) and c) simulated geothermal water (sgw) containing sulphate and chloride; 2) two water interaction conditions: a) static and b) dynamic (water impact); and 3) with and without the presence of cracks. Durability was analysed over 24 months, measuring several physical and chemical parameters of the system, recording changes in both the aggressive media and the concrete. All UHPFRC types demonstrate good durability, showing high resistance to expansion and deformation in the sulphate-rich media. A leaching process occurs in all water interaction systems, the dynamic interaction in sgw being the most aggressive. The interaction of sgw inside the crack favours the formation of solid phases such as calcium carbonates and ettringite, while the presence of nanoadditives affects the response of both the matrix and the formation of precipitates within the crack.


Download data is not yet available.


Van Damme, H. (2018) Concrete material science: Past, present, and future innovations. Cem. Concr. Res.112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002

Akhnoukh, A.K.; Buckhalter, C. (2021) Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges. Case Stud. Constr. Mat. 15, e00559. https://doi.org/10.1016/j.cscm.2021.e00559

Reches, Y. (2018) Nanoparticles as concrete additives: Review and perspectives. Constr. Build. Mat. 175, 483-495. https://doi.org/10.1016/j.conbuildmat.2018.04.214

Shaikh, F.U.A.; Luhar, S.; Arel, H.Ş.; Luhar, I. (2020) Performance evaluation of Ultrahigh performance fibre reinforced concrete - A review. Constr. Build. Mat. 232, 117152. https://doi.org/10.1016/j.conbuildmat.2019.117152

Le Hoang, A.; Fehling, E. (2017) Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Constr. Build. Mat. 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130

Fischer, G.; Li, V. C. (2007) Effect of fiber reinforcement on the response of structural members. Eng. Fract. Mech. 74 [1-2], 258-272. https://doi.org/10.1016/j.engfracmech.2006.01.027

Wang, W.; Liu, J.; Agostini, F.; Davy, C.A.; Skoczylas, F.; Corvez, D. (2014). Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cem. Concr. Res. 55, 1-13. https://doi.org/10.1016/j.cemconres.2013.09.008

El-Joukhadar, N.; Pantazopoulou, S.J. (2021) Effectiveness of UHPFRC cover in delaying bar corrosion. Constr. Build. Mat. 269, 121288. https://doi.org/10.1016/j.conbuildmat.2020.121288

Prasanna, P.K.; Srinivasu, K.; Ramachandra Murthy, A. (2021) Strength and durability of fiber reinforced concrete with partial replacement of cement by Ground Granulated Blast Furnace Slag. Mat. Today: Proceed. ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2021.06.267

Luna, F.J.; Fernández, A.; Alonso, M.C. (2018) The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 [332], e171. https://doi.org/10.3989/mc.2018.11917

Higgins, D.D. (2003) Increased sulfate resistance of ggbs concrete in the presence of carbonate. Cem. Concr. Comp. 25 [8], 913-919. https://doi.org/10.1016/S0958-9465(03)00148-3

Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004

Özbay, E.; Erdemir, M.; Durmuş, H.I. (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Constr. Build. Mat. 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153

Song, Q.; Yu, R.; Shui, Z.; Rao, S.; Fan, D.; Gao, X. (2020) Macro/micro characteristics variation of ultra-high performance fibre reinforced concrete (UHPFRC) subjected to critical marine environments. Constr. Build. Mat. 256, 119458. https://doi.org/10.1016/j.conbuildmat.2020.119458

Oh, B.H.; Jang, S.Y. (2007) Effects of material and environmental parameters on chloride penetration profiles in concrete structures. Cem. Concr. Res. 37 [1], 47-53. https://doi.org/10.1016/j.cemconres.2006.09.005

Yin, S.; Jing, L.; Yin, M.; Wang, B. (2019) Mechanical properties of textile reinforced concrete under chloride wet-dry and freeze-thaw cycle environments. Cem. Concr. Comp. 96, 118-127. https://doi.org/10.1016/j.cemconcomp.2018.11.020

Alonso, C.; Castellote, M.; Llorente, I.; Andrade, C. (2006) Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime. Cem. Concr. Res. 36 [9], 1583-1594. https://doi.org/10.1016/j.cemconres.2006.04.004

Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. (2021) The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mat. 282, 122706. https://doi.org/10.1016/j.conbuildmat.2021.122706

Song, Q.; Yu, R.; Shui, Z.; Rao, S.; Wang, X.; Sun, M.; Jiang, C. (2018) Steel fibre content and interconnection induced electrochemical corrosion of ultra-high performance fibre reinforced concrete (UHPFRC). Cem. Concr. Comp. 94, 191-200. https://doi.org/10.1016/j.cemconcomp.2018.09.010

García Calvo, J.L.; Hidalgo, A.; Alonso, C.; Fernández Luco, L. (2010) Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem. Concr. Res. 40 [8], 1290-1297. https://doi.org/10.1016/j.cemconres.2009.11.008

Qu, F.; Li, W.; Dong, W.; Tam, V. W. Y.; Yu, T. (2021) Durability deterioration of concrete under marine environment from material to structure: A critical review. J. Build Eng. 35, 102074. https://doi.org/10.1016/j.jobe.2020.102074

Cheng, S.; Shui, Z.; Sun, T.; Gao, X.; Guo, C. (2019) Effects of sulfate and magnesium ion on the chloride transportation behavior and binding capacity of Portland cement mortar. Constr. Build. Mat. 204, 265-275. https://doi.org/10.1016/j.conbuildmat.2019.01.132

De Weerdt, K.; Orsáková, D.; Geiker, M.R. (2014) The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem. Concr. Res. 65, 30-40. https://doi.org/10.1016/j.cemconres.2014.07.007

Menéndez, E. (2010) Análisis del hormigón en estructuras afectadas por reacción Árido-Álcali, ataque por sulfatos y ciclos Hielo-deshielo. Ed. IECA, España (2010).

Alonso, M.C.; García Calvo, J.L.; Cuevas, J.; Turrero, M.J.; Fernández, R.; Torres, E.; Ruiz, A.I. (2017) Interaction processes at the concrete-bentonite interface after 13 years of FEBEX-Plug operation. Part I: Concrete alteration. Phys. Chem. Earth. 99, 38-48. https://doi.org/10.1016/j.pce.2017.03.008

Menéndez, E.; García-Rovés, R.; Aldea, B.; Ruíz, S.; Baroghel-Bouny, V. (2019) Combination of immersion and semi-immersion tests to evaluate concretes manufactured with sulfate-resisting cements. J. Sust. Cem-Based Mat. 8 [6], 337-352. https://doi.org/10.1080/21650373.2019.1624659

Pan, Z.; Zhu, Y.; Zhang, D.; Chen, N.; Yang, Y.; Cai, X. (2020) Effect of expansive agents on the workability, crack resistance and durability of shrinkage-compensating concrete with low contents of fibers. Constr. Build. Mat. 259, 119768. https://doi.org/10.1016/j.conbuildmat.2020.119768

Li, K.; Li, L. (2019) Crack-altered durability properties and performance of structural concretes. Cem. Concr. Res. 124, 105811. https://doi.org/10.1016/j.cemconres.2019.105811

Yousefieh, N.; Joshaghani, A.; Hajibandeh, E.; Shekarchi, M. (2017) Influence of fibers on drying shrinkage in restrained concrete. Const. Build. Mat. 148, 833-845. https://doi.org/10.1016/j.conbuildmat.2017.05.093

Ren, J.; Lai, Y. (2021) Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold. Reg. Sci. Tech. 188, 103301. https://doi.org/10.1016/j.coldregions.2021.103301

Golewski, G. L. (2018) An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Comp. Struct. 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144

Ebrahimi, K.; Daiezadeh, M. J.; Zakertabrizi, M.; Zahmatkesh, F.; Habibnejad Korayem, A. (2018) A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective. Constr. Build. Mat. 186, 1105-1113. https://doi.org/10.1016/j.conbuildmat.2018.08.029

Roig-Flores, M.; Formagini, S.; Serna, P. (2021) Self-healing concrete-What Is it good for.Mater. Construcc. 71 [341], e237. https://doi.org/10.3989/mc.2021.07320

Singh, N.B.; Kalra, M.; Saxena, S.K. (2017) Nanoscience of Cement and Concrete. Mat. Today: Proc. 4 [4], 5478-5487. https://doi.org/10.1016/j.matpr.2017.06.003

Sanchez, F.; Sobolev, K. (2010) Nanotechnology in concrete - A review. Constr. Build. Mat. 24 [11], 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014

Sobolev, K. (2016) Modern developments related to nanotechnology and nanoengineering of concrete. Front. Struct. Civ. Eng. 10, 131-141. https://doi.org/10.1007/s11709-016-0343-0

Gopalakrishnan, R.; Jeyalakshmi, R. (2018) Strength deterioration of nano-silica contained in ordinary Portland cement concretes in aggressive sulfate environments. Eur. Phys. J. Plus. 133, 351. https://doi.org/10.1140/epjp/i2018-12162-3

Ferrara, L.; Krelani, V.; Carsana, M. (2014) A "fracture testing" based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mat. 68, 535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008

Nasim, M.; Dewangan, U.K.; Deo, S.V. (2020) Autonomous healing in concrete by crystalline admixture: A review. Mat. Today: Procc. 32, 638-644. https://doi.org/10.1016/j.matpr.2020.03.116

Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. (2012) Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Comp. 34 [4], 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005

Li, Z.; Wang, H.; He, S.; Lu, Y.; Wang, M. (2006) Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mat. Letters. 60 [3], 356-359. https://doi.org/10.1016/j.matlet.2005.08.061

Cao, Y.; Zavaterri, P.; Youngblood, J.; Moon, R.; Weiss, J. (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem. Concr. Comp. 56, 73-83. https://doi.org/10.1016/j.cemconcomp.2014.11.008

Behfarnia, K.; Salemi, N. (2013) The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mat. 48, 580-584. https://doi.org/10.1016/j.conbuildmat.2013.07.088

Lee, S.J.; Kawashima, S.; Kim, K.J.; Woo, S.K.; Won, J.P. (2018) Shrinkage characteristics and strength recovery of nanomaterials-cement composites. Comp. Struct. 202, 559-565. https://doi.org/10.1016/j.compstruct.2018.03.003

Kawashima, S.; Shah, S.P. (2011) Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cem. Concr. Comp. 33 [2], 201-208. https://doi.org/10.1016/j.cemconcomp.2010.10.018

Cuenca, E.; Mezzena, A.; Ferrara, L. (2021) Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Constr. Build. Mat. 266, Part B, 121447. https://doi.org/10.1016/j.conbuildmat.2020.121447

Cuenca, E.; Criado, M.; Giménez, M.; Alonso, M.C. (2021) Effects of alumina nanofibers and cellulose nanocrystals on durability and self-healing capacity of ultra-high performance fiber reinforced concretes (UHPFRC). J. Mater., accepted. https://doi.org/10.3390/su13063061

Kumar, S.; Kumar, R.; Bandopadhyay, A.; Alex, T.C.; Ravi Kumar, B.; Das, S.K.; Mehrotra, S.P. (2008) Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Comp. 30 [8], 679-685. https://doi.org/10.1016/j.cemconcomp.2008.05.005

Zuquan, J.; Wei, S., Yunsheng, Z.; Jinyang, J.; Jianzhong, L. (2007) Interaction between sulfate and chloride solution attack of concretes with and without fly ash. Cem. Concr. Res. 37 [8], 1223-1232. https://doi.org/10.1016/j.cemconres.2007.02.016

Guo, J.J.; Wang, K., Guo, T.; Yang, Z.Y.; Zhang, P. (2019) Effect of dry-wet ratio on properties of concrete under sulfate attack. Mater. 12 [7], 2755. https://doi.org/10.3390/ma12172755 PMid:31461992 PMCid:PMC6747815

García Calvo, J.L.; Alonso, M.C.; Hidalgo, A.; Fernández Luco, L.; Flor-Laguna, V. (2013) Development of low-pH cementitious materials based on CAC for HLW repositories: Long-term hydration and resistance against groundwater aggression. Cem. Concr. Res. 51, 67-77. https://doi.org/10.1016/j.cemconres.2013.04.008

Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212. https://doi.org/10.3989/mc.2020.06319

Taylor, H.F. W.; Famy, C.; Scrivener, K.L. (2001) Delayed ettringite formation. Cem. Concr. Res. 31 [5], 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5



How to Cite

Giménez, M. ., Alonso, M. ., Menéndez, E. ., & Criado, M. . (2021). Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states. Materiales De Construcción, 71(344), e264. https://doi.org/10.3989/mc.2021.14021



Research Articles

Funding data

H2020 European Research Council
Grant numbers 760824