Fresh, hardened and durability properties of sodium carbonate-activated Algerian slag exposed to sulfate and acid attacks




Alkali-activated slag, Sodium carbonate, Mechanical strength, Drying shrinkage, Sulfate resistance, Acid attack


This paper investigates the use of Na2CO3 as an alkaline activator on the durability of the alkali-activated slag (AAS) mortar toward sulfates and acids. The behavior of this binder in these aggressive environments is compared to those of slags activated with Na2SiO3 and NaOH. In addition, the setting times, workabilities, mechanical properties and drying shrinkage were evaluated. The AAS had superior workabilities, faster setting times and higher shrinkage rates than the Portland cement (PC). Increases in the activator dosages had positive effects on the mechanical strengths of the materials. Na2SiO3 was the best activator in terms of strength development, but it led to much higher shrinkage. The AAS showed less expansion and lower weight losses than the PC when exposed to sulfate and acids, respectively. The Na2CO3-AAS exhibited less shrinkage and higher resistance to sulfuric acid than the other activators, but the mechanical strength seen at early ages was low.


Download data is not yet available.


Cadore, D.E.; da Luz, C.A.; de Medeiros, M.F. (2019) An investigation of the carbonation of alkaline activated cement made from blast furnace slag generated by charcoal. Constr. Build. Mater. 226, 117-125.

Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. (2010) CO2 emissions from Polish cement industry. Int. J. Greenh. Gas Control. 4 [4], 583-588.

Van Deventer, J.S.; Provis, J.L.; Duxson, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89-104.

Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem. Concr. Res. 42 [1], 74-83.

Wang, S.D.; Scrivener, K.L.; Pratt, P.L. (1994) Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24 [6], 1033-1043.

Fernández-Jiménez, A.; Puertas, F. (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15 [3], 129-136.

Živica, V. (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 21 [7], 1463-1469.

Fernández-Jiménez, A.; Puertas, F. (2001) Setting of alkali-activated slag cement, Influence of activator nature. Adv. Cem. Res. 13 [3], 115-121.

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (1999) Alkali activation of Australian slag cements. Cem. Concr. Res. 29 [1], 113-120.

Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 113, 783-793.

Krizan, D.; Zivanovic, B. (2002) Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 32 [8], 1181-1188.

Zuo, Y.; Nedeljković, M.; Ye, G. (2019) Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 115, 230-250.

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022.

Reddy, K.C.; Subramaniam, K.V. (2020) Blast furnace slag hydration in an alkaline medium: influence of sodium content and sodium hydroxide molarity. J. Mater. Civ. Eng. 32 [12], 04020371.

Bai, Y.; Collier, N.C.; Milestone, N.B.; Yang, C.H. (2011) The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413 [3], 183-192.

Adesina, A.D. (2018) Effect of green activators on the properties of alkali activated materials: a review. RILEM Publications. 1, 431-436.

Turner, L.K.; Collins, F.G. (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125-130.

Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernández-Jiménez, A. (2021) Portland Versus Alkaline Cement: Continuity or Clean Break: “A Key Decision for Global Sustainability”. Front. Chem. 653.

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2003) Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33 [10], 1607-1611.

Baščarevć, Z. (2015) The resistance of alkali-activated cement-based binders to chemical attack, In Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing. 373-396.

Aydın, S.; Baradan, B. (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos. B. Eng. 57, 166-172.

Palacios, M.; Puertas, F. (2007). Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37 [5], 691-702.

Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. (2019) Autogenous and drying shrinkage of alkali-activated slag mortars. J. Am. Ceram. Soc. 102 [8], 4963-4975.

Siad, H.; Mesbah, H.A.; Khelafi, H.; Kamali-Bernard, S.; Mouli, M. (2010) Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in self-compacting concrete. Can. J. Civ. Eng. 37 [3], 441-449.

Aliques-Granero, J.; Tognonvi, T.M.; Tagnit-Hamou, A. (2017) Durability test methods and their application to AAMs: case of sulfuric-acid resistance. Mater. Struct. 50 [1], 1-14.

Thunuguntla, C.S.; Rao, T.G. (2018) Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173-188.

Pereira, A.; Akasaki, J.L.; Melges, J.L.; Tashima, M.M.; Soriano, L., Borrachero, M.V.; Monzó, J.; Payá, J. (2015) Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram. Int. 41 [10], 13012-13024.

Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275-1296.

Giménez, M.; Alonso, M.C.; Menéndez, E.; Criado, M. (2021) Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states. Mater. Construcc. 71 [344], e264.

Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212.

Flatt, R. J.; Scherer, G. W. (2008). Thermodynamics of crystallization stresses in DEF. Cem. Concr. Res. 38 [3], 325-336.

Liu, L.; Xie, M.; He, Y.; Li, Y.; Huang, X.; Cui, X.; Shi, C. (2020) Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Constr. Build. Mater. 260, 119909.

Beltrame, N.A.M.; da Luz, C.A.; Perardt, M.; Hooton, R.D. (2020) Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 238, 117710.

Allahvedi, A.; Hashemi, H. (2015) Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. Int. J. Civ. Eng. 13 [4], 379-387. Retrieved from

Ye, H.; Chen, Z.; Huang, L. (2019). Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 125, 105868.

Yang, T.; Gao, X.; Zhang, J.; Zhuang, X.; Wang, H.; Zhang, Z. (2022). Sulphate resistance of one-part geopolymer synthesized by calcium carbide residue-sodium carbonate-activation of slag. Compos. B. Eng. 242, 110024.

Kahlouche, R.; Badaoui, A. (2022) Mechanical performance and durability of mortar based on slag cement and NaOH-activated slag. Mater. Sci. Forum. 1078, 179-188.

Kiiashko, A.; Chaouche, M.; Frouin, L. (2021) Effect of phosphonate addition on sodium carbonate activated slag properties. Cem. Concr. Com. 119, 103986.

Jin, F.; Al-Tabbaa, A. (2015) Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Constr. Build. Mater. 81, 58-65.

Kashani, A.; Provis, J.L.; Qiao, G.G.; van Deventer, J.S. (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 65, 583-591.

Palacios, M.; Gismera, S.; Alonso, M.D.M.; de Lacaillerie, J.D.E.; Lothenbach, B.; Favier, A.; Brumaud, C.; Puertas, F. (2021) Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 140, 106302.

Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microp. Mesop. 109 [1-3], 525-534.

Awoyera, P.; Adesina, A. (2019) A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 11, e00268.

Puertas, F.; Varga, C.; Alonso, M.M. (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279-288.

Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S. (2015) Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 48 [3], 517-529.

Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. (2017) Time-dependent characterization of Na2CO3 activated slag. Cem. Concr. Compos. 84, 188-197.

Kovtun, M.; Kearsley, E.P.; Shekhovtsova, J. (2015) Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cem. Concr. Res. 72, 1-9.

Lahalle, H.; Benavent, V.; Trincal, V.; Wattez, T.; Bucher, R.; Cyr, M. (2021) Robustness to water and temperature, and activation energies of metakaolin-based geopolymer and alkali-activated slag binders. Constr. Build. Mater. 300, 124066.

Scherer, G.W. (2015) Drying, shrinkage, and cracking of cementitious materials. Transp. Poro. Media. 110, 311-331.

Collins, F.; Sanjayan, J.G. (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30 [9], 1401-1406.

Wang, S.D.; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7 [27], 93-102.

Li, J.; Yu, Q.; Huang, H.; Yin, S. (2019) Difference in the reaction process of slag activated by waterglass solution and NaOH solution. Struct. Concr. 20 [5], 1528-1540.

Adesina, A. (2021) Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resour. Environ. Sustain. 3, 100016.

Ayub, T.; Shafiq, N.; Khan, S. (2013) Durability of concrete with different mineral admixtures: A comparative review. World Acad. Sci. Engineer. Technol. Int. J. Civ. Eng. 7 [8], 1161-1172.

Komljenović, M.; Baščarević, Z.; Marjanović, N.; Nikolić, V. (2013) External sulfate attack on alkali-activated slag. Constr. Build. Mater. 49, 31-39.

Aliques-Granero, J.; Tognonvi, M.T.; Tagnit-Hamou, A. (2019) Durability study of AAMs: Sulfate attack resistance. Constr. Build. Mater. 229, 117100.

de Hita, M.J.; Criado, M. (2023). Influence of superplasticizers on the workability and mechanical development of binary and ternary blended cement and alkali-activated cement. Constr. Build. Mater. 366, 130272.



How to Cite

Kahlouche, R., Badaoui, A., & Criado, M. (2023). Fresh, hardened and durability properties of sodium carbonate-activated Algerian slag exposed to sulfate and acid attacks. Materiales De Construcción, 73(351), e321.



Research Articles