Fresh, hardened and durability properties of sodium carbonate-activated Algerian slag exposed to sulfate and acid attacks

Authors

DOI:

https://doi.org/10.3989/mc.2023.309922

Keywords:

Alkali-activated slag, Sodium carbonate, Mechanical strength, Drying shrinkage, Sulfate resistance, Acid attack

Abstract


This paper investigates the use of Na2CO3 as an alkaline activator on the durability of the alkali-activated slag (AAS) mortar toward sulfates and acids. The behavior of this binder in these aggressive environments is compared to those of slags activated with Na2SiO3 and NaOH. In addition, the setting times, workabilities, mechanical properties and drying shrinkage were evaluated. The AAS had superior workabilities, faster setting times and higher shrinkage rates than the Portland cement (PC). Increases in the activator dosages had positive effects on the mechanical strengths of the materials. Na2SiO3 was the best activator in terms of strength development, but it led to much higher shrinkage. The AAS showed less expansion and lower weight losses than the PC when exposed to sulfate and acids, respectively. The Na2CO3-AAS exhibited less shrinkage and higher resistance to sulfuric acid than the other activators, but the mechanical strength seen at early ages was low.

Downloads

Download data is not yet available.

References

Cadore, D.E.; da Luz, C.A.; de Medeiros, M.F. (2019) An investigation of the carbonation of alkaline activated cement made from blast furnace slag generated by charcoal. Constr. Build. Mater. 226, 117-125. https://doi.org/10.1016/j.conbuildmat.2019.07.209

Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. (2010) CO2 emissions from Polish cement industry. Int. J. Greenh. Gas Control. 4 [4], 583-588. https://doi.org/10.1016/j.ijggc.2010.02.002

Van Deventer, J.S.; Provis, J.L.; Duxson, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009

Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: Effect of Al2O3. Cem. Concr. Res. 42 [1], 74-83. https://doi.org/10.1016/j.cemconres.2011.08.005

Wang, S.D.; Scrivener, K.L.; Pratt, P.L. (1994) Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24 [6], 1033-1043. https://doi.org/10.1016/0008-8846(94)90026-4

Fernández-Jiménez, A.; Puertas, F. (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15 [3], 129-136. https://doi.org/10.1680/adcr.2003.15.3.129

Živica, V. (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 21 [7], 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002

Fernández-Jiménez, A.; Puertas, F. (2001) Setting of alkali-activated slag cement, Influence of activator nature. Adv. Cem. Res. 13 [3], 115-121. https://doi.org/10.1680/adcr.2001.13.3.115

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (1999) Alkali activation of Australian slag cements. Cem. Concr. Res. 29 [1], 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7

Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 113, 783-793. https://doi.org/10.1016/j.conbuildmat.2016.03.098

Krizan, D.; Zivanovic, B. (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem. Concr. Res. 32 [8], 1181-1188. https://doi.org/10.1016/S0008-8846(01)00717-7

Zuo, Y.; Nedeljković, M.; Ye, G. (2019) Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 115, 230-250. https://doi.org/10.1016/j.cemconres.2018.10.010

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Reddy, K.C.; Subramaniam, K.V. (2020) Blast furnace slag hydration in an alkaline medium: influence of sodium content and sodium hydroxide molarity. J. Mater. Civ. Eng. 32 [12], 04020371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003455

Bai, Y.; Collier, N.C.; Milestone, N.B.; Yang, C.H. (2011) The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413 [3], 183-192. https://doi.org/10.1016/j.jnucmat.2011.04.011

Adesina, A.D. (2018) Effect of green activators on the properties of alkali activated materials: a review. RILEM Publications. 1, 431-436.

Turner, L.K.; Collins, F.G. (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernández-Jiménez, A. (2021) Portland Versus Alkaline Cement: Continuity or Clean Break: "A Key Decision for Global Sustainability". Front. Chem. 653. https://doi.org/10.3389/fchem.2021.705475 PMid:34712645 PMCid:PMC8547590

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2003) Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33 [10], 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X

Baščarevć, Z. (2015) The resistance of alkali-activated cement-based binders to chemical attack, In Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing. 373-396. https://doi.org/10.1533/9781782422884.3.373

Aydın, S.; Baradan, B. (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos. B. Eng. 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001

Palacios, M.; Puertas, F. (2007). Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37 [5], 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021

Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. (2019) Autogenous and drying shrinkage of alkali-activated slag mortars. J. Am. Ceram. Soc. 102 [8], 4963-4975. https://doi.org/10.1111/jace.16349

Siad, H.; Mesbah, H.A.; Khelafi, H.; Kamali-Bernard, S.; Mouli, M. (2010) Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in self-compacting concrete. Can. J. Civ. Eng. 37 [3], 441-449. https://doi.org/10.1139/L09-157

Aliques-Granero, J.; Tognonvi, T.M.; Tagnit-Hamou, A. (2017) Durability test methods and their application to AAMs: case of sulfuric-acid resistance. Mater. Struct. 50 [1], 1-14. https://doi.org/10.1617/s11527-016-0904-7

Thunuguntla, C.S.; Rao, T.G. (2018) Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173-188. https://doi.org/10.1016/j.conbuildmat.2018.10.189

Pereira, A.; Akasaki, J.L.; Melges, J.L.; Tashima, M.M.; Soriano, L., Borrachero, M.V.; Monzó, J.; Payá, J. (2015) Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram. Int. 41 [10], 13012-13024. https://doi.org/10.1016/j.ceramint.2015.07.001

Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004

Giménez, M.; Alonso, M.C.; Menéndez, E.; Criado, M. (2021) Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states. Mater. Construcc. 71 [344], e264. https://doi.org/10.3989/mc.2021.14021

Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212. https://doi.org/10.3989/mc.2020.06319

Flatt, R. J.; Scherer, G. W. (2008). Thermodynamics of crystallization stresses in DEF. Cem. Concr. Res. 38 [3], 325-336. https://doi.org/10.1016/j.cemconres.2007.10.002

Liu, L.; Xie, M.; He, Y.; Li, Y.; Huang, X.; Cui, X.; Shi, C. (2020) Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Constr. Build. Mater. 260, 119909. https://doi.org/10.1016/j.conbuildmat.2020.119909

Beltrame, N.A.M.; da Luz, C.A.; Perardt, M.; Hooton, R.D. (2020) Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 238, 117710. https://doi.org/10.1016/j.conbuildmat.2019.117710

Allahvedi, A.; Hashemi, H. (2015) Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. Int. J. Civ. Eng. 13 [4], 379-387. Retrieved from http://ijce.iust.ac.ir/article-1-907-en.html.

Ye, H.; Chen, Z.; Huang, L. (2019). Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868

Yang, T.; Gao, X.; Zhang, J.; Zhuang, X.; Wang, H.; Zhang, Z. (2022). Sulphate resistance of one-part geopolymer synthesized by calcium carbide residue-sodium carbonate-activation of slag. Compos. B. Eng. 242, 110024. https://doi.org/10.1016/j.compositesb.2022.110024

Kahlouche, R.; Badaoui, A. (2022) Mechanical performance and durability of mortar based on slag cement and NaOH-activated slag. Mater. Sci. Forum. 1078, 179-188. https://doi.org/10.4028/p-j578h5

Kiiashko, A.; Chaouche, M.; Frouin, L. (2021) Effect of phosphonate addition on sodium carbonate activated slag properties. Cem. Concr. Com. 119, 103986. https://doi.org/10.1016/j.cemconcomp.2021.103986

Jin, F.; Al-Tabbaa, A. (2015) Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Constr. Build. Mater. 81, 58-65. https://doi.org/10.1016/j.conbuildmat.2015.01.082

Kashani, A.; Provis, J.L.; Qiao, G.G.; van Deventer, J.S. (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 65, 583-591. https://doi.org/10.1016/j.conbuildmat.2014.04.127

Palacios, M.; Gismera, S.; Alonso, M.D.M.; de Lacaillerie, J.D.E.; Lothenbach, B.; Favier, A.; Brumaud, C.; Puertas, F. (2021) Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 140, 106302. https://doi.org/10.1016/j.cemconres.2020.106302

Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microp. Mesop. 109 [1-3], 525-534. https://doi.org/10.1016/j.micromeso.2007.05.062

Awoyera, P.; Adesina, A. (2019) A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 11, e00268. https://doi.org/10.1016/j.cscm.2019.e00268

Puertas, F.; Varga, C.; Alonso, M.M. (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279-288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S. (2015) Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 48 [3], 517-529. https://doi.org/10.1617/s11527-014-0412-6

Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. (2017) Time-dependent characterization of Na2CO3 activated slag. Cem. Concr. Compos. 84, 188-197. https://doi.org/10.1016/j.cemconcomp.2017.09.005

Kovtun, M.; Kearsley, E.P.; Shekhovtsova, J. (2015) Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cem. Concr. Res. 72, 1-9. https://doi.org/10.1016/j.cemconres.2015.02.014

Lahalle, H.; Benavent, V.; Trincal, V.; Wattez, T.; Bucher, R.; Cyr, M. (2021) Robustness to water and temperature, and activation energies of metakaolin-based geopolymer and alkali-activated slag binders. Constr. Build. Mater. 300, 124066. https://doi.org/10.1016/j.conbuildmat.2021.124066

Scherer, G.W. (2015) Drying, shrinkage, and cracking of cementitious materials. Transp. Poro. Media. 110, 311-331. https://doi.org/10.1007/s11242-015-0518-5

Collins, F.; Sanjayan, J.G. (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30 [9], 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6

Wang, S.D.; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7 [27], 93-102. https://doi.org/10.1680/adcr.1995.7.27.93

Li, J.; Yu, Q.; Huang, H.; Yin, S. (2019) Difference in the reaction process of slag activated by waterglass solution and NaOH solution. Struct. Concr. 20 [5], 1528-1540. https://doi.org/10.1002/suco.201900130

Adesina, A. (2021) Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resour. Environ. Sustain. 3, 100016. https://doi.org/10.1016/j.resenv.2021.100016

Ayub, T.; Shafiq, N.; Khan, S. (2013) Durability of concrete with different mineral admixtures: A comparative review. World Acad. Sci. Engineer. Technol. Int. J. Civ. Eng. 7 [8], 1161-1172.

Komljenović, M.; Baščarević, Z.; Marjanović, N.; Nikolić, V. (2013) External sulfate attack on alkali-activated slag. Constr. Build. Mater. 49, 31-39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

Aliques-Granero, J.; Tognonvi, M.T.; Tagnit-Hamou, A. (2019) Durability study of AAMs: Sulfate attack resistance. Constr. Build. Mater. 229, 117100. https://doi.org/10.1016/j.conbuildmat.2019.117100

de Hita, M.J.; Criado, M. (2023). Influence of superplasticizers on the workability and mechanical development of binary and ternary blended cement and alkali-activated cement. Constr. Build. Mater. 366, 130272. https://doi.org/10.1016/j.conbuildmat.2022.130272

Published

2023-08-10

How to Cite

Kahlouche, R., Badaoui, A., & Criado, M. (2023). Fresh, hardened and durability properties of sodium carbonate-activated Algerian slag exposed to sulfate and acid attacks. Materiales De Construcción, 73(351), e321. https://doi.org/10.3989/mc.2023.309922

Issue

Section

Research Articles