Confinement of FRP concrete columns: Review of design guidelines and comparison with experimental results
DOI:
https://doi.org/10.3989/mc.2022.03821Keywords:
Concrete, Composite, FRP, Confinement, Compressive StrengthAbstract
A regulatory framework is required to ensure the correct design of Fibre-Reinforced Polymers (FRPs) increasingly being used as an externally-bonded strengthening system on concrete columns. Several design guidelines on the confinement of FRP concrete have been developed over the past few years worldwide, each proposing a different approach, resulting in different predictions. This study aims to evaluate and compare nine international design guidelines used to predict the compressive strength of confined concrete in FRP-strengthened concrete columns and weigh them against experimental results. The results of this investigation reveal that the predictions from the guidelines on the compressive strengthening of FRP-confined concrete are generally suitable for circular columns, with the ACI-440 and CNR-DT 200 guideline predictions being two of the most accurate. Nevertheless, the guidelines generally tend to overestimate the load-carrying capacity for the compressive strength of FRP-confined concrete in non-circular columns, for which further experimental work using large-scale specimens is required.
Downloads
References
Calavera Ruiz, J. (2005) Patología de estructuras de hormigón armado y pretensado. INTEMAC, Instituto Técnico de Materiales y Construcciones.
Fernández-Cánovas, M.; González-García, M.N.; Piñero, J.Á.; Cobo, A. (2016) Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study. Mater. Construcc. 66 [324], e103. https://doi.org/10.3989/mc.2016.08315
Tarabia, A.M.; Albakry, H.F. (2014) Strengthening of RC columns by steel angles and strips. Alex. Eng. J. 53 [3], 615-626. https://doi.org/10.1016/j.aej.2014.04.005
Maaddawy, T.E. (2009) Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system: experimental investigation and analytical modeling. J. Compos. Constr. 13 [1], 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13)
Aire, C.; Gettu, R.; Casas, J. R.; Marques, S.; Marques, D. (2010) Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Mater. Construcc. 60 [297], 19-31. https://doi.org/10.3989/mc.2010.45608
Fam, A.; Qie, F.S.; Rizkalla, S. (2004) Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. J. Struct. Eng. 130 [4], 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
Motavalli, M.; Czaderski, C. (2007) FRP Composites for retrofitting of existing civil structures in Europe: State-of-the-art review. Presented at the Composites & Polycon 2007, Tampa, FL USA: American Composites Manufacturers Association.
Nanni, A. (2003) North American design guidelines for concrete reinforcement and strengthening using FRP: principles, applications and unresolved issues. Constr. Build. Mater. 17 [6-7], 439-446 https://doi.org/10.1016/S0950-0618(03)00042-4
Kurrer, K.E. (2018) The history of the theory of structures: Searching for equilibrium. John Wiley & Sons. https://doi.org/10.1002/9783433609163 PMid:31798393 PMCid:PMC6883449
Considère, A. (1902) Résistance à la compression du béton armé et du béton fretté. Le Génie Civil, XLII(1064,1065,1066,1067,1068,1069,1072), 5-7,20-24,38-40,58-60,72-74,82-86,140.
Considère, A. (1902) Étude théorique de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No9), 133-136.
Considère, A. (1902) Étude expérimentale de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No10), 150-153.
Richart, F.E.; Brandtzæg, A.; Brown, R.L. (1928) A study of the failure of concrete under combined compressive stresses. University of Illinois Engineering Experiment Station, Urbana - Champaign, IL. Bulletin 185.
Mander, J.B.; Priestley, M.J.N.; Park, R. (1988) Theoretical stress-strain model for confined concrete. J. Struct. Eng. 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
Suhail, R.; Amato, G.; McCrum, D.P. (2020) Active and passive confinement of shape modified low strength concrete columns using SMA and FRP systems. Compos. Struct. 251, 112649. https://doi.org/10.1016/j.compstruct.2020.112649
Teng, J.G.; Jiang, T. (2008) 6 - Strengthening of reinforced concrete (RC) columns with fibre-reinforced polymer (FRP) composites. In L. C. Hollaway & J. G. Teng (Eds.), Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) Composites (pp. 158-194). Woodhead Publishing. https://doi.org/10.1533/9781845694890.158 PMid:25606143
Lam, L.; Teng, J.G. (2004) Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 8 [6], 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)
Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 17 [6-7], 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
International Federation for Structural Concrete (fib). (2001) fib 14 Externally Bonded FRP Reinforcement for RC Structures: Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures (Bulletin No. 14). Switzerland: fib.
Realfonzo, R.; Napoli, A. (2011) Concrete confined by FRP systems: Confinement efficiency and design strength models. Compos. Part. B-Eng. 42 [4], 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028
Ozbakkaloglu, T.; Lim, J.C.; Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Eng. Struct. 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010
Gora, A.M.; Jaganathan, J.; Amwar, M.P.; Leung, H.Y. (2018) Experimental studies and theoretical models for concrete columns confined with FRP composites: a review. World. J. Eng. https://doi.org/10.1108/WJE-01-2018-0026
Almusallam, T.H. (2007) Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos. Part. B-Eng. 38 [5], 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021
Ozbakkaloglu, T.; Oehlers, D.J. (2008) Concrete-filled square and rectangular FRP tubes under axial compression. J. Compos. Constr. 12 [4], 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)
Wang, L-M.; Wu, Y-F. (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng. Struct. 30 [2], 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016
Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P. (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11 [2], 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
Jiang, T.; Teng, J.G. (2007) Analysis-oriented stress-strain models for FRP-confined concrete. Eng. Struct. 29 [11], 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010
Tamuzs, V.; Tepfers, R.; Zile, E.; Ladnova, O. (2006) Behavior of concrete cylinders confined by a carbon composite 3. Deformability and the ultimate axial strain. Mech. Compos. Mater. 42, 303-314. https://doi.org/10.1007/s11029-006-0040-5
de Diego Villalón, A. (2016) Comportamiento de pilares de hormigón armado confinados con materiales compuestos sometidos a compresión centrada (PhD Thesis). E.T.S.I. Caminos, Canales y Puertos (UPM).
Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22, 1149-1186. https://doi.org/10.1177/0731684403035429
Janwaen, W.; Barros, J.A.; Costa, I.G. (2019) A new strengthening technique for increasing the load carrying capacity of rectangular reinforced concrete columns subjected to axial compressive loading. Compos. Part. B-Eng. 158, 67-81. https://doi.org/10.1016/j.compositesb.2018.09.045
Rochette, P.; Labossière, P. (2000) Axial testing of rectangular column models confined with composites. J. Compos. Constr. 4 [3], 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)
Martínez, S.; de Diego, A.; Castro, V.J.; Echevarría, L.; Barroso, F.J.; Rentero, G.; Soldado, R.P.; Gutiérrez, J.P. (2020) Strengthening of low-strength concrete columns with fibre reinforced polymers. Full-scale tests. Infrastructures. 5 [11], 91. https://doi.org/10.3390/infrastructures5110091
Mirmira, A; Shahawy, M.; Samaan, M.; Echary, H.E.; Mastrapa, J.C.; Pico, O. (1998) Effect of column parameters on FRP-confined concrete. J. Compos. Constr. 2 [4], 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
Ilki, A.; Peke, O.; Karamuk, E.; Demir, C.; Kumbasar, N. (2008) FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J. Mater. Civ. Eng. 20 [2], 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169)
Rocca, S.; Galati, N.; Nanni, A. (2006) Large-size reinforced concrete columns strengthened with carbon FRP: experimental evaluation. In Proceedings of the Third International CICE Conference (pp. 491-494). Presented at the Third International Conference on FRP Composites in Civil Engineering (CICE 2006), Miami, USA: International Institute for FRP in Construction (IIFC).
Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. (2018) Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 174, 629-645. https://doi.org/10.1016/j.engstruct.2018.07.086
Maalej, M.; Tanwongsval, S.; Paramasivam, P. (2003) Modelling of rectangular RC columns strengthened with FRP. Cem. Concr. Compos. 25 [2], 263-276. https://doi.org/10.1016/S0958-9465(02)00017-3
de Diego, A.; Arteaga, A.; Fernández, J.; Perera, R.; Cisneros, D. (2015) Behaviour of FRP confined concrete in square columns. Mater. Construcc. 65 [320], e069. https://doi.org/10.3989/mc.2015.05414
Fanaradelli, T.; Rousakis, T.; Karabinis, A. (2019) Reinforced concrete columns of square and rectangular section, confined with FRP - Prediction of stress and strain at failure. Compos. Part. B-Eng. 174, 107046. https://doi.org/10.1016/j.compositesb.2019.107046
ACI Committee 440. (2017) ACI 440.2R-17 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. USA: American Concrete Institute.
Association Française de Génie Civil. (2011) AFGC Réparation et renforcement des structures en béton au moyen des matériaux composites - Recommandations provisoires. France: AFGC.
CNR-Advisory Committee on technical recommendations for construction. (2013) CNR-DT 200 R1/2013 Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Italy: Italian National Research Council.
Concrete Society. (2012) CS-TR55 Design guiadance for strengthening concrete structures using fibre composite materials (Technical Report No. TR55). UK: Concrete Society.
Canadian Standards Association. (2012) CSA S806-12 Design and construction of building structures with fibre-reinforced polymers. Canada: Canadian Standards Association.
International Federation for Structural Concrete (fib). (2019) Externally applied FRP reinforcement for concrete structures. FIB - International Federation for Structural Concrete.
Kenneth, N. (2008) ISIS Design Manual No. 4 FRP Rehabilitation of reinforced concrete structures (Design Manual No. 4). Canada: ISIS Canada.
Zureick, A.H.; Ellingwood, B.R.; Nowak, A.S.; Mertz, D.; Triantafillou, T.C. (2010) NCHRP-Report 655 Recommended guide specification for the design of externally bonded FRP systems for repair and strengthening of concrete bridge elements (No. 655). USA: Transportation Research Board - National Cooperative Highway Research Program. https://doi.org/10.17226/14401
Turkish Ministry of Public Works and Settlement. (2007) TEC-2007 Turkish Earthquake Code (2007): Regulations on structures constructed in disaster regions. Turkey.
Légeron, F.; Paultre, P. (2003) Uniaxial confinement model for normal- and high-strength concrete columns. J. Struct. Eng. 129 [2], 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241)
Ozbakkaloglu, T.; Saatcioglu, M. (2004) Rectangular stress block for high-strength concrete. ACI Struct. J. 101 [4], 475-483. https://doi.org/10.14359/13333
ACI Committee 318. (2014) ACI 318-14 Building code requirements for structural concrete. USA: American Concrete Institute.
American Association of State Highway and Transportation Officials. (2007) AASHTO LRFD Bridge design specifications (Bulletin No. 4th Edition). Washington, D.C. USA: American Association of State Highway and Transportation Officials.
Spoelstra, M.R.; Monti, G. (1999) FRP-confined concrete model. J. Compos. Constr. 3 [3], 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. (2009) Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13 [4], 274-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012
Teng, J.G.; Lam, L. (2002) Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns. J. Struct. Eng. 128 [12], 1535-1543. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1535)
Triantafillou, T.C.; Choutopoulou, E.; Fotaki, E.; Skorda, M.; Stathopoulou, M.; Karlos, K. (2016) FRP confinement of wall-like reinforced concrete columns. Mater. Struct. 49, 651-664. https://doi.org/10.1617/s11527-015-0526-5
Chaallal, O.; Hassan, M.; LeBlanc, M. (2006) Circular columns confined with FRP: experimental versus predictions of models and guidelines. J. Compos. Constr. 10 [1], 4-12. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(4)
Rocca, S.; Galati, N.; Nanni, A. (2008) Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. J. Compos. Constr. 12 [1], 80-92. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(80)
Yazdani, N.; Beneberu, E.; Mohiuddin, A.H. (2018) CFRP retrofit of concrete circular columns: Evaluation of design guidelines. Compos. Struct. https://doi.org/10.1016/j.compstruct.2018.02.066
Rocca, S. (2007) Experimental and analytical evaluation of FRP-confined large size reinforced concrete columns. Doctoral Dissertations - University of Missouri-Rolla - USA.
Rocca, S.; Galati, N.; Nanni, A. (2008) Experimental evaluation of noncircular reinforced concrete columns strengthened with CFRP. In Seismic strengthening of concrete buildings using FRP composites (pp. 37-56). Michigan, USA: American Concrete Institute.
Jin, L.; Chen, H.; Wang, Z.; Du, X. (2020) Size effect on axial compressive failure of CFRP-wrapped square concrete columns: Tests and simulations. Compos. Struct. 254, 112843. https://doi.org/10.1016/j.compstruct.2020.112843
Ince, R.; Arici, E. (2004) Size effect in bearing strength of concrete cubes. Constr. Build. Mater. 18 [8], 603-609. https://doi.org/10.1016/j.conbuildmat.2004.04.002
Carpinteri, A.; Puzzi, S. (2007) Fractal, statistics and size effect in concrete. In Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures (Vol. 01-03). Presented at the Fracture mechanics of concrete and concrete structures, Catania (Italy): International Association of Fracture Mechanics for Concrete and Concrete Structures.
Burtscher, S.; Chiaia, B.; Dempsey, J.P.; Ferro, G.; Gopalaratnam, V.S.; Prat, P.; Rokugo, K.; Saouma, V.E.; Slowik, V.; Vitek, L.; Willam, K. (2004) RILEM TC QFS 'Quasibrittle fracture scaling and size effect'-final report. Mater. Struct. 37, 547-568. . https://doi.org/10.1007/BF02481579
Saouma, V.E.; Fava, G. (2006) On fractals and size effects. Int. J. Fract. 137, 231-249. https://doi.org/10.1007/s10704-005-3060-6
de Luca, A.; Nardone, F.; Matta, F.; Nanni, A.; Lignola, G.P.; Prota, A. (2011) Structural evaluation of full-Scale FRP-confined reinforced concrete columns. J. Compos. Constr. 15 [1], 112-123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152
Carey, S.A.; Harries, K.A. (2005) Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Struct. J. 102 [4], 596-604. https://doi.org/10.14359/14564
Demers, M.; Neale, K.W. (1999) Confinement of reinforced concrete columns with fibre-reinforced composite sheets - an experimental study. Can. J. Civ. Eng. 26 [2], 226-241. https://doi.org/10.1139/l98-067
Eid, R.; Roy, N.; Paultre, P. (2009) Normal- and high-strength concrete circular elements wrapped with FRP composites. J. Compos. Constr. 13 [2], 113-124. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(113)
Hadi, M.N.S. (2006) Comparative study of eccentrically loaded FRP wrapped columns. Compos. Struct. 74 [2], 127-135. https://doi.org/10.1016/j.compstruct.2005.03.013
Kestner, J. (1998) Rehabilitation of reinforced concrete columns using fiber reinforced polymer composite jackets. Theses and dissertations of Lehigh preserve institutional repository.
Matthys, S.; Toutanji, H.; Audenaert, K.; Taerwe, L. (2005) Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Struct. J. 102 [2], 258-267. https://doi.org/10.14359/14277
Pessik, S.; Harries, K.A.; Kestner, J.T.; Sause, R.; Ricles, J.M. (2001) Axial behavior of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. 5 [4], 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)
Thériault, M.; Neale, K.W.; Claude, S. (2004) Fiber-reinforced polymer-confined circular concrete columns: investigation of size and slenderness effects. J. Compos. Constr. 8 [4], 323-331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323)
Wang, Y.; Zhang, D. (2009) Creep-effect on mechanical behavior of concrete confined by FRP under axial compression. J. Eng. Mech. 135 [11], 1315-1322. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1315)
Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. (2007) Stress-strain model for concrete confined by FRP composites. Compos. Part. B-Eng. 38 [5-6], 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
Toutanji, H.; Han, M.; Gilbert, J.; Matthys, S. (2010) Behavior of large-scale rectangular columns confined with FRP composites. J. Compos. Constr. 14 [1], 62-71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051
Wang, Y-f.; Wu, H-l. (2011) Size effect of concrete short columns confined with aramid FRP jackets. J. Compos. Constr. 15 [4], 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178
Lobo, P.S.; Faustino, P.; Jesus, M.; Marreiros, R. (2018). Design model of concrete for circular columns confined with AFRP. Compos. Struct. 200, 69-78. https://doi.org/10.1016/j.compstruct.2018.05.094
Guler, S.; Ashour, A. (2016) Review of current design guidelines for circular FRP-wrapped plain concrete cylinders. J. Compos. Constr. 20 [2], 04015057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000619
Guo, Y-C.; Gao, W-Y.; Zeng, J-J.; Duan, Z-J.; Ni, X-Y.; Peng, K-D. (2019) Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model. Constr. Build. Mater. 201, 350-368. https://doi.org/10.1016/j.conbuildmat.2018.12.183
Jin, L.; Li, X.; Fan, L.; Du, X. (2020) Size effect on compressive strength of GFRP-confined concrete columns: numerical simulation. J. Compos. Constr. 24 [5], 04020038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001041
Fanaradelli, T.; Rousakis, T. (2020) Assessment of analytical stress and strain at peak and at ultimate conditions for fiber-reinforcement polymer-confined reinforced concrete columns of rectangular sections under axial cyclic loading. Struct. Concr. 22 [1], 95-108. https://doi.org/10.1002/suco.201900386
Lin, G.; Teng, J.G. (2020) Advanced stress-strain model for FRP-confined concrete in square columns. Compos. Part. B-Eng. 197, 108149. https://doi.org/10.1016/j.compositesb.2020.108149
de Diego, A.; Arteaga, Á.; Fernández, J. (2019) Strengthening of square concrete columns with composite materials. Investigation on the FRP jacket ultimate strain. Compos. Part B-Eng. 162, 454-460. https://doi.org/10.1016/j.compositesb.2019.01.017
Kaeseberg, S.; Messerer, D.; Holschemacher, K. (2019) Assessment of standards and codes dedicated to CFRP confinement of RC columns. Materials. 12 [15], 2390. https://doi.org/10.3390/ma12152390 PMid:31357495 PMCid:PMC6695623
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Ministerio de Ciencia e Innovación
Grant numbers PID2020-119015GB-C22