Confinamiento de columnas de hormigón con FRP: revisión de normativas y sus predicciones

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.03821

Palabras clave:

Hormigón, Composite, FRP, Confinamiento, Resistencia a la compresión

Resumen


El crecimiento en el uso de polímeros reforzados con fibra (FRP) como sistema de refuerzo externo en columnas de hormigón requiere de un marco regulatorio para su correcto diseño. En los últimos años se han desarrollado diferentes guías y normativas de diseño, teniendo cada una de ellas un planteamiento diferente y, por lo tanto, arrojando resultados dispares. Esta investigación pretende contrastar con resultados experimentales las predicciones que nueve normativas internacionales hacen sobre la resistencia a compresión de una columna de hormigón confinada con FRP. Los resultados de la investigación muestran que las estimaciones de las normativas sobre la resistencia de las columnas de hormigón confinadas con FRP son, en general, adecuadas para columnas circulares; destacan como las más precisas la ACI-440 y la CNR-DT 200. Por contra, en el caso de columnas no circulares los resultados obtenidos tienden a sobreestimar la resistencia a compresión de las columnas confinadas con FRP, en este caso sería necesario continuar investigando en modelos a gran escala.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Calavera Ruiz, J. (2005) Patología de estructuras de hormigón armado y pretensado. INTEMAC, Instituto Técnico de Materiales y Construcciones.

Fernández-Cánovas, M.; González-García, M.N.; Piñero, J.Á.; Cobo, A. (2016) Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study. Mater. Construcc. 66 [324], e103. https://doi.org/10.3989/mc.2016.08315

Tarabia, A.M.; Albakry, H.F. (2014) Strengthening of RC columns by steel angles and strips. Alex. Eng. J. 53 [3], 615-626. https://doi.org/10.1016/j.aej.2014.04.005

Maaddawy, T.E. (2009) Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system: experimental investigation and analytical modeling. J. Compos. Constr. 13 [1], 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13)

Aire, C.; Gettu, R.; Casas, J. R.; Marques, S.; Marques, D. (2010) Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Mater. Construcc. 60 [297], 19-31. https://doi.org/10.3989/mc.2010.45608

Fam, A.; Qie, F.S.; Rizkalla, S. (2004) Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. J. Struct. Eng. 130 [4], 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)

Motavalli, M.; Czaderski, C. (2007) FRP Composites for retrofitting of existing civil structures in Europe: State-of-the-art review. Presented at the Composites & Polycon 2007, Tampa, FL USA: American Composites Manufacturers Association.

Nanni, A. (2003) North American design guidelines for concrete reinforcement and strengthening using FRP: principles, applications and unresolved issues. Constr. Build. Mater. 17 [6-7], 439-446 https://doi.org/10.1016/S0950-0618(03)00042-4

Kurrer, K.E. (2018) The history of the theory of structures: Searching for equilibrium. John Wiley & Sons. https://doi.org/10.1002/9783433609163 PMid:31798393 PMCid:PMC6883449

Considère, A. (1902) Résistance à la compression du béton armé et du béton fretté. Le Génie Civil, XLII(1064,1065,1066,1067,1068,1069,1072), 5-7,20-24,38-40,58-60,72-74,82-86,140.

Considère, A. (1902) Étude théorique de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No9), 133-136.

Considère, A. (1902) Étude expérimentale de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No10), 150-153.

Richart, F.E.; Brandtzæg, A.; Brown, R.L. (1928) A study of the failure of concrete under combined compressive stresses. University of Illinois Engineering Experiment Station, Urbana - Champaign, IL. Bulletin 185.

Mander, J.B.; Priestley, M.J.N.; Park, R. (1988) Theoretical stress-strain model for confined concrete. J. Struct. Eng. 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

Suhail, R.; Amato, G.; McCrum, D.P. (2020) Active and passive confinement of shape modified low strength concrete columns using SMA and FRP systems. Compos. Struct. 251, 112649. https://doi.org/10.1016/j.compstruct.2020.112649

Teng, J.G.; Jiang, T. (2008) 6 - Strengthening of reinforced concrete (RC) columns with fibre-reinforced polymer (FRP) composites. In L. C. Hollaway & J. G. Teng (Eds.), Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) Composites (pp. 158-194). Woodhead Publishing. https://doi.org/10.1533/9781845694890.158 PMid:25606143

Lam, L.; Teng, J.G. (2004) Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 8 [6], 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)

Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 17 [6-7], 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X

International Federation for Structural Concrete (fib). (2001) fib 14 Externally Bonded FRP Reinforcement for RC Structures: Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures (Bulletin No. 14). Switzerland: fib.

Realfonzo, R.; Napoli, A. (2011) Concrete confined by FRP systems: Confinement efficiency and design strength models. Compos. Part. B-Eng. 42 [4], 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028

Ozbakkaloglu, T.; Lim, J.C.; Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Eng. Struct. 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010

Gora, A.M.; Jaganathan, J.; Amwar, M.P.; Leung, H.Y. (2018) Experimental studies and theoretical models for concrete columns confined with FRP composites: a review. World. J. Eng. https://doi.org/10.1108/WJE-01-2018-0026

Almusallam, T.H. (2007) Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos. Part. B-Eng. 38 [5], 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021

Ozbakkaloglu, T.; Oehlers, D.J. (2008) Concrete-filled square and rectangular FRP tubes under axial compression. J. Compos. Constr. 12 [4], 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)

Wang, L-M.; Wu, Y-F. (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng. Struct. 30 [2], 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016

Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P. (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11 [2], 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)

Jiang, T.; Teng, J.G. (2007) Analysis-oriented stress-strain models for FRP-confined concrete. Eng. Struct. 29 [11], 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010

Tamuzs, V.; Tepfers, R.; Zile, E.; Ladnova, O. (2006) Behavior of concrete cylinders confined by a carbon composite 3. Deformability and the ultimate axial strain. Mech. Compos. Mater. 42, 303-314. https://doi.org/10.1007/s11029-006-0040-5

de Diego Villalón, A. (2016) Comportamiento de pilares de hormigón armado confinados con materiales compuestos sometidos a compresión centrada (PhD Thesis). E.T.S.I. Caminos, Canales y Puertos (UPM).

Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22, 1149-1186. https://doi.org/10.1177/0731684403035429

Janwaen, W.; Barros, J.A.; Costa, I.G. (2019) A new strengthening technique for increasing the load carrying capacity of rectangular reinforced concrete columns subjected to axial compressive loading. Compos. Part. B-Eng. 158, 67-81. https://doi.org/10.1016/j.compositesb.2018.09.045

Rochette, P.; Labossière, P. (2000) Axial testing of rectangular column models confined with composites. J. Compos. Constr. 4 [3], 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)

Martínez, S.; de Diego, A.; Castro, V.J.; Echevarría, L.; Barroso, F.J.; Rentero, G.; Soldado, R.P.; Gutiérrez, J.P. (2020) Strengthening of low-strength concrete columns with fibre reinforced polymers. Full-scale tests. Infrastructures. 5 [11], 91. https://doi.org/10.3390/infrastructures5110091

Mirmira, A; Shahawy, M.; Samaan, M.; Echary, H.E.; Mastrapa, J.C.; Pico, O. (1998) Effect of column parameters on FRP-confined concrete. J. Compos. Constr. 2 [4], 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)

Ilki, A.; Peke, O.; Karamuk, E.; Demir, C.; Kumbasar, N. (2008) FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J. Mater. Civ. Eng. 20 [2], 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169)

Rocca, S.; Galati, N.; Nanni, A. (2006) Large-size reinforced concrete columns strengthened with carbon FRP: experimental evaluation. In Proceedings of the Third International CICE Conference (pp. 491-494). Presented at the Third International Conference on FRP Composites in Civil Engineering (CICE 2006), Miami, USA: International Institute for FRP in Construction (IIFC).

Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. (2018) Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 174, 629-645. https://doi.org/10.1016/j.engstruct.2018.07.086

Maalej, M.; Tanwongsval, S.; Paramasivam, P. (2003) Modelling of rectangular RC columns strengthened with FRP. Cem. Concr. Compos. 25 [2], 263-276. https://doi.org/10.1016/S0958-9465(02)00017-3

de Diego, A.; Arteaga, A.; Fernández, J.; Perera, R.; Cisneros, D. (2015) Behaviour of FRP confined concrete in square columns. Mater. Construcc. 65 [320], e069. https://doi.org/10.3989/mc.2015.05414

Fanaradelli, T.; Rousakis, T.; Karabinis, A. (2019) Reinforced concrete columns of square and rectangular section, confined with FRP - Prediction of stress and strain at failure. Compos. Part. B-Eng. 174, 107046. https://doi.org/10.1016/j.compositesb.2019.107046

ACI Committee 440. (2017) ACI 440.2R-17 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. USA: American Concrete Institute.

Association Française de Génie Civil. (2011) AFGC Réparation et renforcement des structures en béton au moyen des matériaux composites - Recommandations provisoires. France: AFGC.

CNR-Advisory Committee on technical recommendations for construction. (2013) CNR-DT 200 R1/2013 Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Italy: Italian National Research Council.

Concrete Society. (2012) CS-TR55 Design guiadance for strengthening concrete structures using fibre composite materials (Technical Report No. TR55). UK: Concrete Society.

Canadian Standards Association. (2012) CSA S806-12 Design and construction of building structures with fibre-reinforced polymers. Canada: Canadian Standards Association.

International Federation for Structural Concrete (fib). (2019) Externally applied FRP reinforcement for concrete structures. FIB - International Federation for Structural Concrete.

Kenneth, N. (2008) ISIS Design Manual No. 4 FRP Rehabilitation of reinforced concrete structures (Design Manual No. 4). Canada: ISIS Canada.

Zureick, A.H.; Ellingwood, B.R.; Nowak, A.S.; Mertz, D.; Triantafillou, T.C. (2010) NCHRP-Report 655 Recommended guide specification for the design of externally bonded FRP systems for repair and strengthening of concrete bridge elements (No. 655). USA: Transportation Research Board - National Cooperative Highway Research Program. https://doi.org/10.17226/14401

Turkish Ministry of Public Works and Settlement. (2007) TEC-2007 Turkish Earthquake Code (2007): Regulations on structures constructed in disaster regions. Turkey.

Légeron, F.; Paultre, P. (2003) Uniaxial confinement model for normal- and high-strength concrete columns. J. Struct. Eng. 129 [2], 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241)

Ozbakkaloglu, T.; Saatcioglu, M. (2004) Rectangular stress block for high-strength concrete. ACI Struct. J. 101 [4], 475-483. https://doi.org/10.14359/13333

ACI Committee 318. (2014) ACI 318-14 Building code requirements for structural concrete. USA: American Concrete Institute.

American Association of State Highway and Transportation Officials. (2007) AASHTO LRFD Bridge design specifications (Bulletin No. 4th Edition). Washington, D.C. USA: American Association of State Highway and Transportation Officials.

Spoelstra, M.R.; Monti, G. (1999) FRP-confined concrete model. J. Compos. Constr. 3 [3], 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)

Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. (2009) Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13 [4], 274-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012

Teng, J.G.; Lam, L. (2002) Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns. J. Struct. Eng. 128 [12], 1535-1543. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1535)

Triantafillou, T.C.; Choutopoulou, E.; Fotaki, E.; Skorda, M.; Stathopoulou, M.; Karlos, K. (2016) FRP confinement of wall-like reinforced concrete columns. Mater. Struct. 49, 651-664. https://doi.org/10.1617/s11527-015-0526-5

Chaallal, O.; Hassan, M.; LeBlanc, M. (2006) Circular columns confined with FRP: experimental versus predictions of models and guidelines. J. Compos. Constr. 10 [1], 4-12. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(4)

Rocca, S.; Galati, N.; Nanni, A. (2008) Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. J. Compos. Constr. 12 [1], 80-92. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(80)

Yazdani, N.; Beneberu, E.; Mohiuddin, A.H. (2018) CFRP retrofit of concrete circular columns: Evaluation of design guidelines. Compos. Struct. https://doi.org/10.1016/j.compstruct.2018.02.066

Rocca, S. (2007) Experimental and analytical evaluation of FRP-confined large size reinforced concrete columns. Doctoral Dissertations - University of Missouri-Rolla - USA.

Rocca, S.; Galati, N.; Nanni, A. (2008) Experimental evaluation of noncircular reinforced concrete columns strengthened with CFRP. In Seismic strengthening of concrete buildings using FRP composites (pp. 37-56). Michigan, USA: American Concrete Institute.

Jin, L.; Chen, H.; Wang, Z.; Du, X. (2020) Size effect on axial compressive failure of CFRP-wrapped square concrete columns: Tests and simulations. Compos. Struct. 254, 112843. https://doi.org/10.1016/j.compstruct.2020.112843

Ince, R.; Arici, E. (2004) Size effect in bearing strength of concrete cubes. Constr. Build. Mater. 18 [8], 603-609. https://doi.org/10.1016/j.conbuildmat.2004.04.002

Carpinteri, A.; Puzzi, S. (2007) Fractal, statistics and size effect in concrete. In Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures (Vol. 01-03). Presented at the Fracture mechanics of concrete and concrete structures, Catania (Italy): International Association of Fracture Mechanics for Concrete and Concrete Structures.

Burtscher, S.; Chiaia, B.; Dempsey, J.P.; Ferro, G.; Gopalaratnam, V.S.; Prat, P.; Rokugo, K.; Saouma, V.E.; Slowik, V.; Vitek, L.; Willam, K. (2004) RILEM TC QFS 'Quasibrittle fracture scaling and size effect'-final report. Mater. Struct. 37, 547-568. . https://doi.org/10.1007/BF02481579

Saouma, V.E.; Fava, G. (2006) On fractals and size effects. Int. J. Fract. 137, 231-249. https://doi.org/10.1007/s10704-005-3060-6

de Luca, A.; Nardone, F.; Matta, F.; Nanni, A.; Lignola, G.P.; Prota, A. (2011) Structural evaluation of full-Scale FRP-confined reinforced concrete columns. J. Compos. Constr. 15 [1], 112-123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152

Carey, S.A.; Harries, K.A. (2005) Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Struct. J. 102 [4], 596-604. https://doi.org/10.14359/14564

Demers, M.; Neale, K.W. (1999) Confinement of reinforced concrete columns with fibre-reinforced composite sheets - an experimental study. Can. J. Civ. Eng. 26 [2], 226-241. https://doi.org/10.1139/l98-067

Eid, R.; Roy, N.; Paultre, P. (2009) Normal- and high-strength concrete circular elements wrapped with FRP composites. J. Compos. Constr. 13 [2], 113-124. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(113)

Hadi, M.N.S. (2006) Comparative study of eccentrically loaded FRP wrapped columns. Compos. Struct. 74 [2], 127-135. https://doi.org/10.1016/j.compstruct.2005.03.013

Kestner, J. (1998) Rehabilitation of reinforced concrete columns using fiber reinforced polymer composite jackets. Theses and dissertations of Lehigh preserve institutional repository.

Matthys, S.; Toutanji, H.; Audenaert, K.; Taerwe, L. (2005) Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Struct. J. 102 [2], 258-267. https://doi.org/10.14359/14277

Pessik, S.; Harries, K.A.; Kestner, J.T.; Sause, R.; Ricles, J.M. (2001) Axial behavior of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. 5 [4], 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)

Thériault, M.; Neale, K.W.; Claude, S. (2004) Fiber-reinforced polymer-confined circular concrete columns: investigation of size and slenderness effects. J. Compos. Constr. 8 [4], 323-331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323)

Wang, Y.; Zhang, D. (2009) Creep-effect on mechanical behavior of concrete confined by FRP under axial compression. J. Eng. Mech. 135 [11], 1315-1322. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1315)

Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. (2007) Stress-strain model for concrete confined by FRP composites. Compos. Part. B-Eng. 38 [5-6], 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020

Toutanji, H.; Han, M.; Gilbert, J.; Matthys, S. (2010) Behavior of large-scale rectangular columns confined with FRP composites. J. Compos. Constr. 14 [1], 62-71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051

Wang, Y-f.; Wu, H-l. (2011) Size effect of concrete short columns confined with aramid FRP jackets. J. Compos. Constr. 15 [4], 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178

Lobo, P.S.; Faustino, P.; Jesus, M.; Marreiros, R. (2018). Design model of concrete for circular columns confined with AFRP. Compos. Struct. 200, 69-78. https://doi.org/10.1016/j.compstruct.2018.05.094

Guler, S.; Ashour, A. (2016) Review of current design guidelines for circular FRP-wrapped plain concrete cylinders. J. Compos. Constr. 20 [2], 04015057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000619

Guo, Y-C.; Gao, W-Y.; Zeng, J-J.; Duan, Z-J.; Ni, X-Y.; Peng, K-D. (2019) Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model. Constr. Build. Mater. 201, 350-368. https://doi.org/10.1016/j.conbuildmat.2018.12.183

Jin, L.; Li, X.; Fan, L.; Du, X. (2020) Size effect on compressive strength of GFRP-confined concrete columns: numerical simulation. J. Compos. Constr. 24 [5], 04020038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001041

Fanaradelli, T.; Rousakis, T. (2020) Assessment of analytical stress and strain at peak and at ultimate conditions for fiber-reinforcement polymer-confined reinforced concrete columns of rectangular sections under axial cyclic loading. Struct. Concr. 22 [1], 95-108. https://doi.org/10.1002/suco.201900386

Lin, G.; Teng, J.G. (2020) Advanced stress-strain model for FRP-confined concrete in square columns. Compos. Part. B-Eng. 197, 108149. https://doi.org/10.1016/j.compositesb.2020.108149

de Diego, A.; Arteaga, Á.; Fernández, J. (2019) Strengthening of square concrete columns with composite materials. Investigation on the FRP jacket ultimate strain. Compos. Part B-Eng. 162, 454-460. https://doi.org/10.1016/j.compositesb.2019.01.017

Kaeseberg, S.; Messerer, D.; Holschemacher, K. (2019) Assessment of standards and codes dedicated to CFRP confinement of RC columns. Materials. 12 [15], 2390. https://doi.org/10.3390/ma12152390 PMid:31357495 PMCid:PMC6695623

Publicado

2022-03-01

Cómo citar

Salesa, A. ., Esteban, L. ., & Barris, C. . (2022). Confinamiento de columnas de hormigón con FRP: revisión de normativas y sus predicciones. Materiales De Construcción, 72(345), e274. https://doi.org/10.3989/mc.2022.03821

Número

Sección

Artículos

Datos de los fondos

Ministerio de Ciencia e Innovación
Números de la subvención PID2020-119015GB-C22