Confinement of FRP concrete columns: Review of design guidelines and comparison with experimental results

Authors

DOI:

https://doi.org/10.3989/mc.2022.03821

Keywords:

Concrete, Composite, FRP, Confinement, Compressive Strength

Abstract


A regulatory framework is required to ensure the correct design of Fibre-Reinforced Polymers (FRPs) increasingly being used as an externally-bonded strengthening system on concrete columns. Several design guidelines on the confinement of FRP concrete have been developed over the past few years worldwide, each proposing a different approach, resulting in different predictions. This study aims to evaluate and compare nine international design guidelines used to predict the compressive strength of confined concrete in FRP-strengthened concrete columns and weigh them against experimental results. The results of this investigation reveal that the predictions from the guidelines on the compressive strengthening of FRP-confined concrete are generally suitable for circular columns, with the ACI-440 and CNR-DT 200 guideline predictions being two of the most accurate. Nevertheless, the guidelines generally tend to overestimate the load-carrying capacity for the compressive strength of FRP-confined concrete in non-circular columns, for which further experimental work using large-scale specimens is required.

Downloads

Download data is not yet available.

References

Calavera Ruiz, J. (2005) Patología de estructuras de hormigón armado y pretensado. INTEMAC, Instituto Técnico de Materiales y Construcciones.

Fernández-Cánovas, M.; González-García, M.N.; Piñero, J.Á.; Cobo, A. (2016) Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study. Mater. Construcc. 66 [324], e103. https://doi.org/10.3989/mc.2016.08315

Tarabia, A.M.; Albakry, H.F. (2014) Strengthening of RC columns by steel angles and strips. Alex. Eng. J. 53 [3], 615-626. https://doi.org/10.1016/j.aej.2014.04.005

Maaddawy, T.E. (2009) Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system: experimental investigation and analytical modeling. J. Compos. Constr. 13 [1], 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13)

Aire, C.; Gettu, R.; Casas, J. R.; Marques, S.; Marques, D. (2010) Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Mater. Construcc. 60 [297], 19-31. https://doi.org/10.3989/mc.2010.45608

Fam, A.; Qie, F.S.; Rizkalla, S. (2004) Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. J. Struct. Eng. 130 [4], 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)

Motavalli, M.; Czaderski, C. (2007) FRP Composites for retrofitting of existing civil structures in Europe: State-of-the-art review. Presented at the Composites & Polycon 2007, Tampa, FL USA: American Composites Manufacturers Association.

Nanni, A. (2003) North American design guidelines for concrete reinforcement and strengthening using FRP: principles, applications and unresolved issues. Constr. Build. Mater. 17 [6-7], 439-446 https://doi.org/10.1016/S0950-0618(03)00042-4

Kurrer, K.E. (2018) The history of the theory of structures: Searching for equilibrium. John Wiley & Sons. https://doi.org/10.1002/9783433609163 PMid:31798393 PMCid:PMC6883449

Considère, A. (1902) Résistance à la compression du béton armé et du béton fretté. Le Génie Civil, XLII(1064,1065,1066,1067,1068,1069,1072), 5-7,20-24,38-40,58-60,72-74,82-86,140.

Considère, A. (1902) Étude théorique de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No9), 133-136.

Considère, A. (1902) Étude expérimentale de la résistance à la compression du béton fretté. Le Ciment: son emploi et ses applications nouvelles, (7e Anné-No10), 150-153.

Richart, F.E.; Brandtzæg, A.; Brown, R.L. (1928) A study of the failure of concrete under combined compressive stresses. University of Illinois Engineering Experiment Station, Urbana - Champaign, IL. Bulletin 185.

Mander, J.B.; Priestley, M.J.N.; Park, R. (1988) Theoretical stress-strain model for confined concrete. J. Struct. Eng. 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

Suhail, R.; Amato, G.; McCrum, D.P. (2020) Active and passive confinement of shape modified low strength concrete columns using SMA and FRP systems. Compos. Struct. 251, 112649. https://doi.org/10.1016/j.compstruct.2020.112649

Teng, J.G.; Jiang, T. (2008) 6 - Strengthening of reinforced concrete (RC) columns with fibre-reinforced polymer (FRP) composites. In L. C. Hollaway & J. G. Teng (Eds.), Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) Composites (pp. 158-194). Woodhead Publishing. https://doi.org/10.1533/9781845694890.158 PMid:25606143

Lam, L.; Teng, J.G. (2004) Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 8 [6], 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)

Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 17 [6-7], 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X

International Federation for Structural Concrete (fib). (2001) fib 14 Externally Bonded FRP Reinforcement for RC Structures: Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures (Bulletin No. 14). Switzerland: fib.

Realfonzo, R.; Napoli, A. (2011) Concrete confined by FRP systems: Confinement efficiency and design strength models. Compos. Part. B-Eng. 42 [4], 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028

Ozbakkaloglu, T.; Lim, J.C.; Vincent, T. (2013) FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Eng. Struct. 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010

Gora, A.M.; Jaganathan, J.; Amwar, M.P.; Leung, H.Y. (2018) Experimental studies and theoretical models for concrete columns confined with FRP composites: a review. World. J. Eng. https://doi.org/10.1108/WJE-01-2018-0026

Almusallam, T.H. (2007) Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos. Part. B-Eng. 38 [5], 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021

Ozbakkaloglu, T.; Oehlers, D.J. (2008) Concrete-filled square and rectangular FRP tubes under axial compression. J. Compos. Constr. 12 [4], 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)

Wang, L-M.; Wu, Y-F. (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng. Struct. 30 [2], 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016

Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P. (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11 [2], 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)

Jiang, T.; Teng, J.G. (2007) Analysis-oriented stress-strain models for FRP-confined concrete. Eng. Struct. 29 [11], 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010

Tamuzs, V.; Tepfers, R.; Zile, E.; Ladnova, O. (2006) Behavior of concrete cylinders confined by a carbon composite 3. Deformability and the ultimate axial strain. Mech. Compos. Mater. 42, 303-314. https://doi.org/10.1007/s11029-006-0040-5

de Diego Villalón, A. (2016) Comportamiento de pilares de hormigón armado confinados con materiales compuestos sometidos a compresión centrada (PhD Thesis). E.T.S.I. Caminos, Canales y Puertos (UPM).

Lam, L.; Teng, J.G. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 22, 1149-1186. https://doi.org/10.1177/0731684403035429

Janwaen, W.; Barros, J.A.; Costa, I.G. (2019) A new strengthening technique for increasing the load carrying capacity of rectangular reinforced concrete columns subjected to axial compressive loading. Compos. Part. B-Eng. 158, 67-81. https://doi.org/10.1016/j.compositesb.2018.09.045

Rochette, P.; Labossière, P. (2000) Axial testing of rectangular column models confined with composites. J. Compos. Constr. 4 [3], 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)

Martínez, S.; de Diego, A.; Castro, V.J.; Echevarría, L.; Barroso, F.J.; Rentero, G.; Soldado, R.P.; Gutiérrez, J.P. (2020) Strengthening of low-strength concrete columns with fibre reinforced polymers. Full-scale tests. Infrastructures. 5 [11], 91. https://doi.org/10.3390/infrastructures5110091

Mirmira, A; Shahawy, M.; Samaan, M.; Echary, H.E.; Mastrapa, J.C.; Pico, O. (1998) Effect of column parameters on FRP-confined concrete. J. Compos. Constr. 2 [4], 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)

Ilki, A.; Peke, O.; Karamuk, E.; Demir, C.; Kumbasar, N. (2008) FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns. J. Mater. Civ. Eng. 20 [2], 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169)

Rocca, S.; Galati, N.; Nanni, A. (2006) Large-size reinforced concrete columns strengthened with carbon FRP: experimental evaluation. In Proceedings of the Third International CICE Conference (pp. 491-494). Presented at the Third International Conference on FRP Composites in Civil Engineering (CICE 2006), Miami, USA: International Institute for FRP in Construction (IIFC).

Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. (2018) Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 174, 629-645. https://doi.org/10.1016/j.engstruct.2018.07.086

Maalej, M.; Tanwongsval, S.; Paramasivam, P. (2003) Modelling of rectangular RC columns strengthened with FRP. Cem. Concr. Compos. 25 [2], 263-276. https://doi.org/10.1016/S0958-9465(02)00017-3

de Diego, A.; Arteaga, A.; Fernández, J.; Perera, R.; Cisneros, D. (2015) Behaviour of FRP confined concrete in square columns. Mater. Construcc. 65 [320], e069. https://doi.org/10.3989/mc.2015.05414

Fanaradelli, T.; Rousakis, T.; Karabinis, A. (2019) Reinforced concrete columns of square and rectangular section, confined with FRP - Prediction of stress and strain at failure. Compos. Part. B-Eng. 174, 107046. https://doi.org/10.1016/j.compositesb.2019.107046

ACI Committee 440. (2017) ACI 440.2R-17 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. USA: American Concrete Institute.

Association Française de Génie Civil. (2011) AFGC Réparation et renforcement des structures en béton au moyen des matériaux composites - Recommandations provisoires. France: AFGC.

CNR-Advisory Committee on technical recommendations for construction. (2013) CNR-DT 200 R1/2013 Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Italy: Italian National Research Council.

Concrete Society. (2012) CS-TR55 Design guiadance for strengthening concrete structures using fibre composite materials (Technical Report No. TR55). UK: Concrete Society.

Canadian Standards Association. (2012) CSA S806-12 Design and construction of building structures with fibre-reinforced polymers. Canada: Canadian Standards Association.

International Federation for Structural Concrete (fib). (2019) Externally applied FRP reinforcement for concrete structures. FIB - International Federation for Structural Concrete.

Kenneth, N. (2008) ISIS Design Manual No. 4 FRP Rehabilitation of reinforced concrete structures (Design Manual No. 4). Canada: ISIS Canada.

Zureick, A.H.; Ellingwood, B.R.; Nowak, A.S.; Mertz, D.; Triantafillou, T.C. (2010) NCHRP-Report 655 Recommended guide specification for the design of externally bonded FRP systems for repair and strengthening of concrete bridge elements (No. 655). USA: Transportation Research Board - National Cooperative Highway Research Program. https://doi.org/10.17226/14401

Turkish Ministry of Public Works and Settlement. (2007) TEC-2007 Turkish Earthquake Code (2007): Regulations on structures constructed in disaster regions. Turkey.

Légeron, F.; Paultre, P. (2003) Uniaxial confinement model for normal- and high-strength concrete columns. J. Struct. Eng. 129 [2], 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241)

Ozbakkaloglu, T.; Saatcioglu, M. (2004) Rectangular stress block for high-strength concrete. ACI Struct. J. 101 [4], 475-483. https://doi.org/10.14359/13333

ACI Committee 318. (2014) ACI 318-14 Building code requirements for structural concrete. USA: American Concrete Institute.

American Association of State Highway and Transportation Officials. (2007) AASHTO LRFD Bridge design specifications (Bulletin No. 4th Edition). Washington, D.C. USA: American Association of State Highway and Transportation Officials.

Spoelstra, M.R.; Monti, G. (1999) FRP-confined concrete model. J. Compos. Constr. 3 [3], 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)

Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. (2009) Refinement of a design-oriented stress-strain model for FRP-confined concrete. J. Compos. Constr. 13 [4], 274-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012

Teng, J.G.; Lam, L. (2002) Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns. J. Struct. Eng. 128 [12], 1535-1543. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1535)

Triantafillou, T.C.; Choutopoulou, E.; Fotaki, E.; Skorda, M.; Stathopoulou, M.; Karlos, K. (2016) FRP confinement of wall-like reinforced concrete columns. Mater. Struct. 49, 651-664. https://doi.org/10.1617/s11527-015-0526-5

Chaallal, O.; Hassan, M.; LeBlanc, M. (2006) Circular columns confined with FRP: experimental versus predictions of models and guidelines. J. Compos. Constr. 10 [1], 4-12. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(4)

Rocca, S.; Galati, N.; Nanni, A. (2008) Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. J. Compos. Constr. 12 [1], 80-92. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(80)

Yazdani, N.; Beneberu, E.; Mohiuddin, A.H. (2018) CFRP retrofit of concrete circular columns: Evaluation of design guidelines. Compos. Struct. https://doi.org/10.1016/j.compstruct.2018.02.066

Rocca, S. (2007) Experimental and analytical evaluation of FRP-confined large size reinforced concrete columns. Doctoral Dissertations - University of Missouri-Rolla - USA.

Rocca, S.; Galati, N.; Nanni, A. (2008) Experimental evaluation of noncircular reinforced concrete columns strengthened with CFRP. In Seismic strengthening of concrete buildings using FRP composites (pp. 37-56). Michigan, USA: American Concrete Institute.

Jin, L.; Chen, H.; Wang, Z.; Du, X. (2020) Size effect on axial compressive failure of CFRP-wrapped square concrete columns: Tests and simulations. Compos. Struct. 254, 112843. https://doi.org/10.1016/j.compstruct.2020.112843

Ince, R.; Arici, E. (2004) Size effect in bearing strength of concrete cubes. Constr. Build. Mater. 18 [8], 603-609. https://doi.org/10.1016/j.conbuildmat.2004.04.002

Carpinteri, A.; Puzzi, S. (2007) Fractal, statistics and size effect in concrete. In Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures (Vol. 01-03). Presented at the Fracture mechanics of concrete and concrete structures, Catania (Italy): International Association of Fracture Mechanics for Concrete and Concrete Structures.

Burtscher, S.; Chiaia, B.; Dempsey, J.P.; Ferro, G.; Gopalaratnam, V.S.; Prat, P.; Rokugo, K.; Saouma, V.E.; Slowik, V.; Vitek, L.; Willam, K. (2004) RILEM TC QFS 'Quasibrittle fracture scaling and size effect'-final report. Mater. Struct. 37, 547-568. . https://doi.org/10.1007/BF02481579

Saouma, V.E.; Fava, G. (2006) On fractals and size effects. Int. J. Fract. 137, 231-249. https://doi.org/10.1007/s10704-005-3060-6

de Luca, A.; Nardone, F.; Matta, F.; Nanni, A.; Lignola, G.P.; Prota, A. (2011) Structural evaluation of full-Scale FRP-confined reinforced concrete columns. J. Compos. Constr. 15 [1], 112-123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152

Carey, S.A.; Harries, K.A. (2005) Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Struct. J. 102 [4], 596-604. https://doi.org/10.14359/14564

Demers, M.; Neale, K.W. (1999) Confinement of reinforced concrete columns with fibre-reinforced composite sheets - an experimental study. Can. J. Civ. Eng. 26 [2], 226-241. https://doi.org/10.1139/l98-067

Eid, R.; Roy, N.; Paultre, P. (2009) Normal- and high-strength concrete circular elements wrapped with FRP composites. J. Compos. Constr. 13 [2], 113-124. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(113)

Hadi, M.N.S. (2006) Comparative study of eccentrically loaded FRP wrapped columns. Compos. Struct. 74 [2], 127-135. https://doi.org/10.1016/j.compstruct.2005.03.013

Kestner, J. (1998) Rehabilitation of reinforced concrete columns using fiber reinforced polymer composite jackets. Theses and dissertations of Lehigh preserve institutional repository.

Matthys, S.; Toutanji, H.; Audenaert, K.; Taerwe, L. (2005) Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Struct. J. 102 [2], 258-267. https://doi.org/10.14359/14277

Pessik, S.; Harries, K.A.; Kestner, J.T.; Sause, R.; Ricles, J.M. (2001) Axial behavior of reinforced concrete columns confined with FRP jackets. J. Compos. Constr. 5 [4], 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)

Thériault, M.; Neale, K.W.; Claude, S. (2004) Fiber-reinforced polymer-confined circular concrete columns: investigation of size and slenderness effects. J. Compos. Constr. 8 [4], 323-331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323)

Wang, Y.; Zhang, D. (2009) Creep-effect on mechanical behavior of concrete confined by FRP under axial compression. J. Eng. Mech. 135 [11], 1315-1322. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1315)

Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. (2007) Stress-strain model for concrete confined by FRP composites. Compos. Part. B-Eng. 38 [5-6], 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020

Toutanji, H.; Han, M.; Gilbert, J.; Matthys, S. (2010) Behavior of large-scale rectangular columns confined with FRP composites. J. Compos. Constr. 14 [1], 62-71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051

Wang, Y-f.; Wu, H-l. (2011) Size effect of concrete short columns confined with aramid FRP jackets. J. Compos. Constr. 15 [4], 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178

Lobo, P.S.; Faustino, P.; Jesus, M.; Marreiros, R. (2018). Design model of concrete for circular columns confined with AFRP. Compos. Struct. 200, 69-78. https://doi.org/10.1016/j.compstruct.2018.05.094

Guler, S.; Ashour, A. (2016) Review of current design guidelines for circular FRP-wrapped plain concrete cylinders. J. Compos. Constr. 20 [2], 04015057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000619

Guo, Y-C.; Gao, W-Y.; Zeng, J-J.; Duan, Z-J.; Ni, X-Y.; Peng, K-D. (2019) Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model. Constr. Build. Mater. 201, 350-368. https://doi.org/10.1016/j.conbuildmat.2018.12.183

Jin, L.; Li, X.; Fan, L.; Du, X. (2020) Size effect on compressive strength of GFRP-confined concrete columns: numerical simulation. J. Compos. Constr. 24 [5], 04020038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001041

Fanaradelli, T.; Rousakis, T. (2020) Assessment of analytical stress and strain at peak and at ultimate conditions for fiber-reinforcement polymer-confined reinforced concrete columns of rectangular sections under axial cyclic loading. Struct. Concr. 22 [1], 95-108. https://doi.org/10.1002/suco.201900386

Lin, G.; Teng, J.G. (2020) Advanced stress-strain model for FRP-confined concrete in square columns. Compos. Part. B-Eng. 197, 108149. https://doi.org/10.1016/j.compositesb.2020.108149

de Diego, A.; Arteaga, Á.; Fernández, J. (2019) Strengthening of square concrete columns with composite materials. Investigation on the FRP jacket ultimate strain. Compos. Part B-Eng. 162, 454-460. https://doi.org/10.1016/j.compositesb.2019.01.017

Kaeseberg, S.; Messerer, D.; Holschemacher, K. (2019) Assessment of standards and codes dedicated to CFRP confinement of RC columns. Materials. 12 [15], 2390. https://doi.org/10.3390/ma12152390 PMid:31357495 PMCid:PMC6695623

Published

2022-03-01

How to Cite

Salesa, A. ., Esteban, L. ., & Barris, C. . (2022). Confinement of FRP concrete columns: Review of design guidelines and comparison with experimental results. Materiales De Construcción, 72(345), e274. https://doi.org/10.3989/mc.2022.03821

Issue

Section

Research Articles

Funding data

Ministerio de Ciencia e Innovación
Grant numbers PID2020-119015GB-C22