Comportamiento de viga reforzada con FRCM de cáñamo sometida a cargas cíclicas

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.07721

Palabras clave:

Ensayo de carga cíclica, Viga de hormigón, Fibras vegetales, Cáñamo, FRCM

Resumen


Los compuestos de matriz cementicia reforzada con tejidos (FRCM) son materiales que generalmente se aplican para el refuerzo de las estructuras existentes. En este estudio, se fabricó una malla de cáñamo recubierta con epoxi y se combinó con una matriz cementicia para reforzar una viga de hormigón. Esta viga se sometió a ensayos de carga cíclica de flexión y un ensayo no destructivo de análisis modal. El análisis modal se realizó para determinar las propiedades dinámicas elásticas de la viga en condiciones de pre-fisuración, post-fisuración y reforzado. La rigidez de la viga aumentó después del reforzar con FRCM de cáñamo. Los resultados del ensayo de carga cíclica experimental mostraron que el sistema de FRCM de cáñamo mejoró la capacidad de carga de la viga en el estado límite de servicio en un 42%. Los modelos analíticos y numéricos se ajustaron y validaron utilizando los resultados experimentales, y ambos demostraron ser herramientas de cálculo efectivas. Los modelos reproducen con precisión el comportamiento de la viga de hormigón reforzado con FRCM cuando la conexión de refuerzo podía evitar fallas por deslizamiento y desprendimiento del mortero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Tahar, H.D.; Abderezak, R.; Rabia, B.; Tounsi, A. (2021) Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses. Coupled Syst. Mech. 10 [2] , 161-184.

Bisby, L.A.; Roy, E.C.; Ward, M.; Stratford, T.J. (2009) Fibre reinforced cementitious matrix systems for fire-safe flexural strengthening of concrete: Pilot testing at ambient temperature. Adv. Compos. Constr. ACIC 2009 - Proc. 4th Int. Conf. 449-460.

Bisby, P.L.; Stratford, T.; Hart, C.; Farren, S. (2013) Fire performance of well-anchored TRM, FRCM and FRP flexural strengthening systems. Adv. Compos. Constr. ACIC 2013 - Conf. Proc. 98-109.

Larrinaga, P.; Garmendia, L.; Piñero, I.; San-José, J.T. (2020) Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG). Constr. Build. Mater. 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790

Raoof, S.M.; Bournas, D.A. (2017) TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures. Constr. Build. Mater. 154, 424-437. https://doi.org/10.1016/j.conbuildmat.2017.07.195

Younis, A.; Ebead, U.; Shrestha, K.C. (2017) Different FRCM systems for shear-strengthening of reinforced concrete beams. Constr. Build. Mater. 153, 514-526. https://doi.org/10.1016/j.conbuildmat.2017.07.132

Escrig, C.; Gil, L.; Bernat-Maso, E. (2017) Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials. Constr. Build. Mater. 137, 317-329. https://doi.org/10.1016/j.conbuildmat.2017.01.106

Cevallos, O.A.; Olivito, R.S.; Codispoti, R.; Ombres, L. (2015) Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos. Part B Eng. 71, 82-95. https://doi.org/10.1016/j.compositesb.2014.10.055

Wambua, P.; Ivens, J.; Verpoest, I. (2003) Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63 [9] , 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4

Rosamaria C. (2013) Mechanical performance of natural fiber-reinforced composites for the strengthening of ancient masonry. University of Calabria.

Huang, L.; Yan, B.; Yan, L.; Xu, Q.; Tan, H.; Kasal, B. (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Compos. Part B Eng. 91, 569-578. https://doi.org/10.1016/j.compositesb.2016.02.014

Snoeck, D.; Smetryns, P.A.; De Belie, N. (2015) Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosyst. Eng. 139, 87-99. https://doi.org/10.1016/j.biosystemseng.2015.08.007

Cevallos, O.A.; Olivito, R.S. (2015) Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. Part B Eng. 69, 256-266. https://doi.org/10.1016/j.compositesb.2014.10.004

Mercedes, L.; Gil, L.; Bernat-Maso, E. (2018) Mechanical performance of vegetal fabric reinforced cementitious matrix ( FRCM ) composites. Constr. Build. Mater. 175, 161-173. https://doi.org/10.1016/j.conbuildmat.2018.04.171

Ardanuy, M.; Claramunt, J.; Toledo-Filho R.D. (2015) Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79, 115-128. https://doi.org/10.1016/j.conbuildmat.2015.01.035

Ahmad, H.; Fan, M. (2018) Interfacial properties and structural performance of resin-coated natural fibre rebars within cementitious matrices. Cem. Concr. Compos. 87, 44-52. https://doi.org/10.1016/j.cemconcomp.2017.12.002

Micelli, F.; Aiello, M.A. (2016) Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments. Compos. Part B Eng. 159, 490-501. https://doi.org/10.1016/j.compositesb.2017.03.005

Donnini, J.; Corinaldesi, V. (2017) Mechanical characterization of different FRCM systems for structural reinforcement. Constr. Build. Mater. 145, 565-575. https://doi.org/10.1016/j.conbuildmat.2017.04.051

D'Antino, T.; Papanicolaou, C. (2017) Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 127, 78-91. https://doi.org/10.1016/j.compositesb.2017.02.034

Shao, Y.; Billington, S.L. (2020) Flexural performance of steel-reinforced engineered cementitious composites with different reinforcing ratios and steel types. Constr. Build. Mater. 231, 117159. https://doi.org/10.1016/j.conbuildmat.2019.117159

EN 12390. Testing hardened concrete. Part 3: compressive strength of test specimens. n.d.

Ministerio de Fomento. Comisión Permanente del Hormigón. (2011) EHE-08 Intrucción de hormigon estructural,. 5a Edición.

EN 1504-3. (2005) EN 1504-3 Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 3: Structural and non-structural repair.

EN 1015-11:2019. (2019) Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar.

Bernat-Maso, E.; Teneva, E.; Escrig, C.; Gil, L. (2017) Ultrasound transmission method to assess raw earthen materials. Constr. Build. Mater. 156, 555-564. https://doi.org/10.1016/j.conbuildmat.2017.09.012

Simulia (2011) Abaqus 6.14. User's Manual.

Salman, M.M.; Al-Amawee, A. (2006) The Ratio between static and dynamic modulus of elasticity in normal and high strength concrete. J. Eng. Dev. 10 [2] , 163-174.

FEMA 461. (2007) Interim Testing protocols for determining the seismic performance characteristics of structural and nonstructural components.

Ministerio de Fomento (2019) Documento básico SE-seguridad estructural.

BS EN 1992-1-1. (2004) Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings. Br. Stand. Inst. 1, 230.

Bertolesi, E.; Carozzi, F.G.; Milani, G.; Poggi, C. (2014) Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Constr. Build. Mater. 70, 531-548. https://doi.org/10.1016/j.conbuildmat.2014.08.006

Alfarah, B.; López-Almansa, F.; Oller, S. (2017) New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Eng. Struct. 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022

Jorge, NL. (2008) Analisis de la aplicacion del metodo de los elementos finitos al modelado de elementos de hormigón armado.

Sümer, Y.; Aktaş, M. (2015) Defining parameters for concrete damage plasticity model. 1, 149-155.

Bertolesi, E.; Milani, G.; Poggi, C. (2016) Simple holonomic homogenization model for the non-linear static analysis of in-plane loaded masonry walls strengthened with FRCM composites. Compos. Struct. 158, 291-307. https://doi.org/10.1016/j.compstruct.2016.09.027

Zhang, S.; Yang, D.; Sheng, Y.; Garrity, S.W.; Xu, L. (2017) Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading. Constr. Build. Mater. 134, 649-663. https://doi.org/10.1016/j.conbuildmat.2016.12.091

Mercedes, L.; Bernat-Maso, E.; Gil, L. (2020) In-plane cyclic loading of masonry walls strengthened by vegetal-fabric-reinforced cementitious matrix (FRCM) composites. Eng. Struct. 221, 111097. https://doi.org/10.1016/j.engstruct.2020.111097

Publicado

2022-03-03

Cómo citar

Mercedes, L. ., Mendizábal, V. ., Bernat-Maso, E. ., & Gil, L. . (2022). Comportamiento de viga reforzada con FRCM de cáñamo sometida a cargas cíclicas. Materiales De Construcción, 72(345), e270. https://doi.org/10.3989/mc.2022.07721

Número

Sección

Artículos

Datos de los fondos

Ministerio de Economía y Competitividad
Números de la subvención RTI2018-099589-B-I00