Propiedades en estado fresco, endurecido y de durabilidad de escoria argelina activada con carbonato sódico frente a los ataques por sulfato y ácido

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.309922

Palabras clave:

Escoria activada alcalinamente, Carbonato sódico, Resistencia mecánica, Retracción por secado, Resistencia a los sulfatos, Ataque ácido

Resumen


En este trabajo se investiga el efecto de usar Na2CO3 como activador sobre la durabilidad presentada por los morteros de escoria activados alcalinamente (AAS) frente a los ataques por sulfato y por ácido. Los resultados muestran que las AAS presentan una mayor trabajabilidad, tiempo de fraguado rápido y una alta retracción comparados con la muestra de cemento Portland (PC). El aumento de la dosis del activador tiene un efecto positivo en la resistencia mecánica. El mortero de AAS-Na2SiO3 es el mejor activador en términos de desarrollo de resistencias, pero presenta una retracción más alta. La expansión de AAS cuando es expuesto a Na2SO4 y la pérdida de peso experimentada en ambos ácidos es menor que aquellas presentadas por el PC. El mortero de AAS-Na2CO3 tiene una baja retracción y una alta resistencia al H2SO4 en comparación con los AAS-Na2SiO3 y NaOH, aunque su resistencia mecánica es baja a edad temprana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Cadore, D.E.; da Luz, C.A.; de Medeiros, M.F. (2019) An investigation of the carbonation of alkaline activated cement made from blast furnace slag generated by charcoal. Constr. Build. Mater. 226, 117-125. https://doi.org/10.1016/j.conbuildmat.2019.07.209

Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. (2010) CO2 emissions from Polish cement industry. Int. J. Greenh. Gas Control. 4 [4], 583-588. https://doi.org/10.1016/j.ijggc.2010.02.002

Van Deventer, J.S.; Provis, J.L.; Duxson, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009

Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: Effect of Al2O3. Cem. Concr. Res. 42 [1], 74-83. https://doi.org/10.1016/j.cemconres.2011.08.005

Wang, S.D.; Scrivener, K.L.; Pratt, P.L. (1994) Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24 [6], 1033-1043. https://doi.org/10.1016/0008-8846(94)90026-4

Fernández-Jiménez, A.; Puertas, F. (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15 [3], 129-136. https://doi.org/10.1680/adcr.2003.15.3.129

Živica, V. (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr. Build. Mater. 21 [7], 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002

Fernández-Jiménez, A.; Puertas, F. (2001) Setting of alkali-activated slag cement, Influence of activator nature. Adv. Cem. Res. 13 [3], 115-121. https://doi.org/10.1680/adcr.2001.13.3.115

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (1999) Alkali activation of Australian slag cements. Cem. Concr. Res. 29 [1], 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7

Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 113, 783-793. https://doi.org/10.1016/j.conbuildmat.2016.03.098

Krizan, D.; Zivanovic, B. (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem. Concr. Res. 32 [8], 1181-1188. https://doi.org/10.1016/S0008-8846(01)00717-7

Zuo, Y.; Nedeljković, M.; Ye, G. (2019) Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 115, 230-250. https://doi.org/10.1016/j.cemconres.2018.10.010

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Reddy, K.C.; Subramaniam, K.V. (2020) Blast furnace slag hydration in an alkaline medium: influence of sodium content and sodium hydroxide molarity. J. Mater. Civ. Eng. 32 [12], 04020371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003455

Bai, Y.; Collier, N.C.; Milestone, N.B.; Yang, C.H. (2011) The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J. Nucl. Mater. 413 [3], 183-192. https://doi.org/10.1016/j.jnucmat.2011.04.011

Adesina, A.D. (2018) Effect of green activators on the properties of alkali activated materials: a review. RILEM Publications. 1, 431-436.

Turner, L.K.; Collins, F.G. (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernández-Jiménez, A. (2021) Portland Versus Alkaline Cement: Continuity or Clean Break: "A Key Decision for Global Sustainability". Front. Chem. 653. https://doi.org/10.3389/fchem.2021.705475 PMid:34712645 PMCid:PMC8547590

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2003) Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33 [10], 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X

Baščarevć, Z. (2015) The resistance of alkali-activated cement-based binders to chemical attack, In Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing. 373-396. https://doi.org/10.1533/9781782422884.3.373

Aydın, S.; Baradan, B. (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos. B. Eng. 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001

Palacios, M.; Puertas, F. (2007). Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37 [5], 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021

Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. (2019) Autogenous and drying shrinkage of alkali-activated slag mortars. J. Am. Ceram. Soc. 102 [8], 4963-4975. https://doi.org/10.1111/jace.16349

Siad, H.; Mesbah, H.A.; Khelafi, H.; Kamali-Bernard, S.; Mouli, M. (2010) Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in self-compacting concrete. Can. J. Civ. Eng. 37 [3], 441-449. https://doi.org/10.1139/L09-157

Aliques-Granero, J.; Tognonvi, T.M.; Tagnit-Hamou, A. (2017) Durability test methods and their application to AAMs: case of sulfuric-acid resistance. Mater. Struct. 50 [1], 1-14. https://doi.org/10.1617/s11527-016-0904-7

Thunuguntla, C.S.; Rao, T.G. (2018) Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173-188. https://doi.org/10.1016/j.conbuildmat.2018.10.189

Pereira, A.; Akasaki, J.L.; Melges, J.L.; Tashima, M.M.; Soriano, L., Borrachero, M.V.; Monzó, J.; Payá, J. (2015) Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram. Int. 41 [10], 13012-13024. https://doi.org/10.1016/j.ceramint.2015.07.001

Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004

Giménez, M.; Alonso, M.C.; Menéndez, E.; Criado, M. (2021) Durability of UHPFRC functionalised with nanoadditives due to synergies in the action of sulphate and chloride in cracked and uncracked states. Mater. Construcc. 71 [344], e264. https://doi.org/10.3989/mc.2021.14021

Santillán, L.R.; Locati, F.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2020) Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Mater. Construcc. 70 [337], e212. https://doi.org/10.3989/mc.2020.06319

Flatt, R. J.; Scherer, G. W. (2008). Thermodynamics of crystallization stresses in DEF. Cem. Concr. Res. 38 [3], 325-336. https://doi.org/10.1016/j.cemconres.2007.10.002

Liu, L.; Xie, M.; He, Y.; Li, Y.; Huang, X.; Cui, X.; Shi, C. (2020) Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Constr. Build. Mater. 260, 119909. https://doi.org/10.1016/j.conbuildmat.2020.119909

Beltrame, N.A.M.; da Luz, C.A.; Perardt, M.; Hooton, R.D. (2020) Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 238, 117710. https://doi.org/10.1016/j.conbuildmat.2019.117710

Allahvedi, A.; Hashemi, H. (2015) Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. Int. J. Civ. Eng. 13 [4], 379-387. Retrieved from http://ijce.iust.ac.ir/article-1-907-en.html.

Ye, H.; Chen, Z.; Huang, L. (2019). Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868

Yang, T.; Gao, X.; Zhang, J.; Zhuang, X.; Wang, H.; Zhang, Z. (2022). Sulphate resistance of one-part geopolymer synthesized by calcium carbide residue-sodium carbonate-activation of slag. Compos. B. Eng. 242, 110024. https://doi.org/10.1016/j.compositesb.2022.110024

Kahlouche, R.; Badaoui, A. (2022) Mechanical performance and durability of mortar based on slag cement and NaOH-activated slag. Mater. Sci. Forum. 1078, 179-188. https://doi.org/10.4028/p-j578h5

Kiiashko, A.; Chaouche, M.; Frouin, L. (2021) Effect of phosphonate addition on sodium carbonate activated slag properties. Cem. Concr. Com. 119, 103986. https://doi.org/10.1016/j.cemconcomp.2021.103986

Jin, F.; Al-Tabbaa, A. (2015) Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Constr. Build. Mater. 81, 58-65. https://doi.org/10.1016/j.conbuildmat.2015.01.082

Kashani, A.; Provis, J.L.; Qiao, G.G.; van Deventer, J.S. (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 65, 583-591. https://doi.org/10.1016/j.conbuildmat.2014.04.127

Palacios, M.; Gismera, S.; Alonso, M.D.M.; de Lacaillerie, J.D.E.; Lothenbach, B.; Favier, A.; Brumaud, C.; Puertas, F. (2021) Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 140, 106302. https://doi.org/10.1016/j.cemconres.2020.106302

Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microp. Mesop. 109 [1-3], 525-534. https://doi.org/10.1016/j.micromeso.2007.05.062

Awoyera, P.; Adesina, A. (2019) A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 11, e00268. https://doi.org/10.1016/j.cscm.2019.e00268

Puertas, F.; Varga, C.; Alonso, M.M. (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279-288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S. (2015) Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 48 [3], 517-529. https://doi.org/10.1617/s11527-014-0412-6

Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. (2017) Time-dependent characterization of Na2CO3 activated slag. Cem. Concr. Compos. 84, 188-197. https://doi.org/10.1016/j.cemconcomp.2017.09.005

Kovtun, M.; Kearsley, E.P.; Shekhovtsova, J. (2015) Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cem. Concr. Res. 72, 1-9. https://doi.org/10.1016/j.cemconres.2015.02.014

Lahalle, H.; Benavent, V.; Trincal, V.; Wattez, T.; Bucher, R.; Cyr, M. (2021) Robustness to water and temperature, and activation energies of metakaolin-based geopolymer and alkali-activated slag binders. Constr. Build. Mater. 300, 124066. https://doi.org/10.1016/j.conbuildmat.2021.124066

Scherer, G.W. (2015) Drying, shrinkage, and cracking of cementitious materials. Transp. Poro. Media. 110, 311-331. https://doi.org/10.1007/s11242-015-0518-5

Collins, F.; Sanjayan, J.G. (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 30 [9], 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6

Wang, S.D.; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7 [27], 93-102. https://doi.org/10.1680/adcr.1995.7.27.93

Li, J.; Yu, Q.; Huang, H.; Yin, S. (2019) Difference in the reaction process of slag activated by waterglass solution and NaOH solution. Struct. Concr. 20 [5], 1528-1540. https://doi.org/10.1002/suco.201900130

Adesina, A. (2021) Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resour. Environ. Sustain. 3, 100016. https://doi.org/10.1016/j.resenv.2021.100016

Ayub, T.; Shafiq, N.; Khan, S. (2013) Durability of concrete with different mineral admixtures: A comparative review. World Acad. Sci. Engineer. Technol. Int. J. Civ. Eng. 7 [8], 1161-1172.

Komljenović, M.; Baščarević, Z.; Marjanović, N.; Nikolić, V. (2013) External sulfate attack on alkali-activated slag. Constr. Build. Mater. 49, 31-39. https://doi.org/10.1016/j.conbuildmat.2013.08.013

Aliques-Granero, J.; Tognonvi, M.T.; Tagnit-Hamou, A. (2019) Durability study of AAMs: Sulfate attack resistance. Constr. Build. Mater. 229, 117100. https://doi.org/10.1016/j.conbuildmat.2019.117100

de Hita, M.J.; Criado, M. (2023). Influence of superplasticizers on the workability and mechanical development of binary and ternary blended cement and alkali-activated cement. Constr. Build. Mater. 366, 130272. https://doi.org/10.1016/j.conbuildmat.2022.130272

Publicado

2023-08-10

Cómo citar

Kahlouche, R., Badaoui, A., & Criado, M. (2023). Propiedades en estado fresco, endurecido y de durabilidad de escoria argelina activada con carbonato sódico frente a los ataques por sulfato y ácido. Materiales De Construcción, 73(351), e321. https://doi.org/10.3989/mc.2023.309922

Número

Sección

Artículos