Study on binary and ternary systems with cement, hydrated lime and fly ash: thermogravimetric analysis, mechanical analysis and durability behaviour
DOI:
https://doi.org/10.3989/mc.2023.346623Keywords:
Hydrated lime, Cement, Afşin-Elbistan fly ash, Thermogravimetry, Portlandite, Mechanical properties, Field emission scanning electron microscopyAbstract
The use of high percentages of substitution of Portland cement by pozzolans can provoke the total consumption of portlandite. The present research proposes the study of ternary systems of Portland cement (PC), fly ash (FA), and hydrated lime (CH). After 180 days of curing, the mortar with 50% substitution of PC by FA obtained 65.9 MPa versus the mortars with an addition of 20% of CH and control mortar (100 PC) that obtained 69.9 MPa and 76.7 MPa respectively: this behavior is very positive value considering that tested FA containing mortars had a 50% of Portland cement. Regarding the effect of the amount of extra hydrated lime on durability issues, the evolution against carbonation of PC-FA and PC-CH-FA mortars was studied: the reduction of carbonation velocity was around a 37% for the mortar with CH respect the PC-FA mortar.
Downloads
References
Ayasgil, D.; Ince, C.; Derogar, S.; Ball, R.J. (2022) The long-term engineering properties and sustainability indices of dewatering hydrated lime mortars through Jacaranda seed pods. Sustain. Mater. Techno. 32, e00435.
Elsen, J.; Mertens, G.; Snellings, R. (2011) Portland cement and other calcareous hydraulic binders: History, production and mineralogy. Eur. Mineral. Union Notes Mineral. 9 [1], 441-479.
Andrew, R.M. (2019) Global CO2 emissions from cement production, 1928-2018. Earth Sys. Sci. Data. 11 [4], 1675-1710.
Sustainable development goals. United Nations Development Programme. Accessed January 9, 2023. Retrieved from https://www.undp.org/sustainable-development-goals.
Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-662.
Teara, A.; Shu Ing, D. (2020). Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Phys. Chem. Earth. 120, 102942.
Sun, X.; Zhao, Y.; Tian Y.; Wu, P.; Guo, Z.; Qiu, J.; Xing, J.; Xiaowei, G. (2021) Modification of high-volume fly ash cement with metakaolin for its utilization in cemented paste backfill: The effects of metakaolin content and particle size. Powder Technol. 393, 539-549.
Stefanović, G.; Ćojbašć, L.; Sekulić, Ž.; Matijašević, S. (2007) Hydration study of mechanically activated mixtures of Portland cement and fly ash. J. Serb. Chem. Soc. 72 [6], 591-604.
Justnes, H.; Skocek, J.; Østnor, T.A.; Engelsen, C.J.; Skjølsvold, O. (2020) Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cem. Concr. Res. 137, 106192.
Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535-541.
Mira, P.; Papadakis, V.G.; Tsimas, S. (2002) Effect of lime putty addition on structural and durability properties of concrete. Cem. Concr. Res . 32 [5], 683-689.
Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge S. (2020) Effect of nano-silica addition into high volume fly ash-hydrated lime blended concrete. Constr. Build. Mater. 253, 119205.
Filho, J.H.; Medeiros, M.H.F.; Pereira, E.; Helene, P.; Asce, M.; Isaia, G.C. (2013) High-volume fly ash concrete with and without hydrated lime: chloride diffusion coefficient from accelerated test. J. Mater. Civ. Eng. 25 [3], 411-418.
Anjos, M.A.S.; Reis, R.; Camões, A.; Duarte, F.; Jesus, C. (2019) Evaluation of hydration of cement pastes containing high volume of mineral additions. Eur. J. Environ. 23 [8], 987-1002.
Fonseca, T.V.; dos Anjos, M.A.S.; Ferreira, R.L.S.; Branco, F.G.; Pereira, L. (2022) Evaluation of self-compacting concretes produced with ternary and quaternary blends of different SCM and hydrated-lime. Constr. Build. Mater. 320, 126235.
Luxán, M.P.; Sánchez de Rojas, M.I.; Frías, M. (1989) Investigations on the fly ash-calcium hydroxide reactions. Cem. Concr. Res. 19 [1], 69-80. https://doi.org/10.1016/0008-8846(89)90067-7.
Vigil de la Villa, R.V.; De Soto, I.S.; García-Giménez, R.; Frías M. (2017) Thermodynamic evaluation of pozzolanic reactions between activated pozzolan mix of clay waste/fly ash and calcium hydroxide. J. Mater. Civ. Eng. 29 [8], 04017065.
Arandigoyen, M.; Bicer-Simsir, B.; Alvarez, J.I.; Lange, D.A. (2006) Variation of microstructure with carbonation in lime and blended pastes. Appl. Surf. Sci. 252 [20], 7562-7571.
Arandigoyen, M.; Alvarez, J.I. (2007) Pore structure and mechanical properties of cement-lime mortars. Cem. Concr. Res. 37 [5], 767-775.
Pacheco-Torgal, F.; Faria, J.; Jalali, S. (2012) Some considerations about the use of lime-cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Constr. Build. Mater. 30, 488-494.
Sébaïbi, Y.; Dheilly, R.M.; Quéneudec, M. (2004) A study of the viscosity of lime-cement paste: Influence of the physico-chemical characteristics of lime. Constr. Build. Mater. 18 [9], 653-660.
Sébaïbi, Y.; Dheilly, R.M.; Beaudoin, B.; Quéneudec, M (2006) The effect of various slaked limes on the microstructure of a lime-cement-sand mortar. Cem. Concr. Res. 36 [5], 971-978.
Fourmentin, M.; Faure, P.; Gauffinet, S.; Peter, U.; Lesueur, D.; Daviller, D.; Ovarlez, G.; Coussot, P. (2015) Porous structure and mechanical strength of cement-lime pastes during setting. Cem. Concr. Res. 77, 1-8.
Sangi-Gonçalves, H.; Penteado-Dias, D.; Castillo-Lara, R. (2022) Replacement of hydrated lime by lime mud-residue from the cellulose industry in multiple-use mortars production. Mater. Constr. 72 [347], e292.
AENOR. UNE-EN 197-1. Cement. Part 1: Composition, specifications and conformity criteria for common cements. (2011).
AENOR. UNE-EN 459-1. Building lime. Part 1: Definitions, specifications and conformity criteria (2016).
Rao, S.M.; Asha, K. (2012) Activation of fly ash-lime reactions: kinetic approach. J. Mater. Civ. Eng. 24 [8], 1110-1117.
Payá, J.; Borrachero, M.V.; Monzó, J.; Peris-Mora, E.; Amahjour, F. (2001) Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem. Concr. Res. 31 [1], 41-49.
Payá, J.; Monzó, J.; Borrachero, M.V.; Velázquez, S.; Bonilla M. (2003) Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes. Cem. Concr. Res. 33, 1085-1091. 33 [7],
Soriano, L.; Monzó, J.; Bonilla, M.; Tashima, M.M; Payá, J.; Borrachero, M.V. (2013) Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem. Concr. Compos. 42, 41-48.
Zhang, D.; Wang, Y.; Ma, M.; Guo, X.; Zhao, S.; Zhang, S.; Yang, Q. (2022) Effect of equal volume replacement of fine aggregate with fly ash on carbonation resistance of concrete. Materials. 15 [4], 1550.
Jia, Y.; Aruhan, B.; Yan, P. (2012) Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period. Mag. Concr. 64 [2], 143-150.
Zhang, G.; Peng, G.F.; Zuo, X.Y; Niu, X.J.; Ding, H. (2023). Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultra-high-performance concrete. Cem. Concr. Res. 167, 107130.
Gleize, P.J.P.; Müller, A.; Roman, H.R. (2003) Microstructural investigation of a silica fume-cement-lime mortar. Cem. Concr. Compos. 25 [2], 171-175.
Manzano, H.; González-Teresa, R.; Dolado, J.S.; Ayuela, A. (2010). X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels. Mater. Constr. 60 [299], 7-19.
Izadifar, M.; Königer, F.; Gerdes, A.; Wöll, C.; Thissen, P. (2019) Correlation between composition and mechanical properties of calcium silicate hydrates identified by infrared spectroscopy and density functional theory. J. Phys. Chem. C. 123, 10868-10873.
Ramesh, M.; Azenha, M.; Lourenço, P.B. (2019) Quantification of impact of lime on mechanical behaviour of lime cement blended mortars for bedding joints in masonry systems. Constr. Build. Mater. 229, 116884.
Adesina, P.A.; Olutoge, F.A. (2019) Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. J. Build. Eng. 25, 100804.
Acharya, P.K.; Patro, S.K. (2015) Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr. Build. Mater. 94, 448-457.
Sisomphon, K.; Franke, L. (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem. Concr. Res. 37 [12], 1647-1653.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.