Effect of pre-wetting treatment for waste waterglass foundry sand on the properties of alkali-activated slag

Authors

DOI:

https://doi.org/10.3989/mc.2024.371123

Keywords:

Alkali-activated slag materials, Waste waterglass foundry sand, Interface, Compressive strength, Nanoindentation

Abstract


Waste waterglass foundry sand (WwFS) is a solid waste generated by the foundry industries that is commonly discarded in landfills and has urgent needs for disposal and recycling. Accordingly, this study suggests using WwFS as aggregates source for the preparation of alkali-activated slag mortars (AASM). Two different pre-wetting methods (24 h pre-wetting at 20°C and 1~6 h pre-wetting at 70°C) were used to treat WwFS and compared their performances with adding quartz sand and dried WwFS mortars. Compared to WwFS mortars without pre-wetting treatment, the compressive strengths of WwFS mortars containing WwFS pre-wetting in water at 70°C at 28d were increased by 1.3~10.0%, and the C-(A)-S-H average elastic modulus was increased by 16%. This study confirmed the feasibility of using hot water pre-wetted WwFS as the single aggregate source for AASM, which is important for the large-scale utilization of WwFS.

Downloads

Download data is not yet available.

References

Ashish DK, Verma SK. 2021. Robustness of self-compacting concrete containing waste foundry sand and metakaolin: A sustainable approach. J. Hazard Mater. 401:123329. https://doi.org/10.1016/j.jhazmat.2020.123329 PMid:33113711

Dyer PPOL, de Lima MG, Klinsky LMG, Silva SA, Coppio GJL. 2018. Environmental characterization of Foundry Waste Sand (WFS). in hot mix asphalt (HMA. mixtures. Constr. Build. Mater. 171: 474-484. https://doi.org/10.1016/j.conbuildmat.2018.03.151

Parashar A, Aggarwal P, Saini B, Aggarwal Y, Bishnoi S. 2020. Study on performance enhancement of self-compacting concrete incorporating waste foundry sand. Constr. Build. Mater. 251:118875. https://doi.org/10.1016/j.conbuildmat.2020.118875

Kaur G, Siddique R, Rajor A. 2012. Properties of concrete containing fungal treated waste foundry sand. Constr. Build. Mater. 29: 82-87. https://doi.org/10.1016/j.conbuildmat.2011.08.091

Siddique R, Schutter Gd, Noumowe A. 2009. Effect of used-foundry sand on the mechanical properties of concrete. Constr. Build. Mater. 23(2): 976-980. https://doi.org/10.1016/j.conbuildmat.2008.05.005

Mashifana T, Sithole T. 2020. Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. J. Sustainable Metall. 6(4): 700-714. https://doi.org/10.1007/s40831-020-00303-5

Ferrazzo ST, Araújo MTd, Bruschi GJ, Chaves HM, Korf EP, ConsoliNC. 2023. Mechanical and environmental behavior of waste foundry sand stabilized with alkali-activated sugar cane bagasse ash-eggshell lime binder. Constr. Build. Mater. 383: 131313. https://doi.org/10.1016/j.conbuildmat.2023.131313

Mavroulidou M, Lawrence D. 2018. Can waste foundry sand fully replace structural concrete sand?. J. Mater. Cycles Waste Manage. 21(3):594-605. https://doi.org/10.1007/s10163-018-00821-1

Sithole NT, Tsotetsi NT, Mashifana T, Sillanpää M. 2022. Alternative cleaner production of sustainable concrete from waste foundry sand and slag. J. Cleaner Prod. 336: 130399. https://doi.org/10.1016/j.jclepro.2022.130399

Sawai H, RahmanI MM, Fujita M, Jii N, Wakabayashi T, Begum ZA, Maki T, Mizutani S, Hasegawa H. 2016. Decontamination of metal-contaminated waste foundry sands using an EDTA-NaOH-NH3 washing solution. Chem. Eng. J.296: 199-208. https://doi.org/10.1016/j.cej.2016.03.078

Park CL, Kim BG, Yu Y. 2012. The regeneration of waste foundry sand and residue stabilization using coal refuse. J. Hazard. Mater. 203-204: 176-182. https://doi.org/10.1016/j.jhazmat.2011.11.100 PMid:22197564

Ahmad J, Aslam F, Zaid O, Alyousef R, Alabduljabbar H. 2021. Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand. Struct. Concr. 22(5): 2775-2790. https://doi.org/10.1002/suco.202000830

Iloh P, Fanourakis G, Ogra A. 2019. Evaluation of physical and chemical properties of South African Waste Foundry Sand (WFS). for Concrete Use, Sustainability. 11(1): 193. https://doi.org/10.3390/su11010193

Manoharan T, Laksmanan D, Mylsamy K, Sivakumar P, Sircar A. 2018. Engineering properties of concrete with partial utilization of used foundry sand. Waste Manage. (Oxford). 71:454-460. https://doi.org/10.1016/j.wasman.2017.10.022 PMid:29103896

Prabhu GG, HyunJ H, Kim YY. 2014. Effects of foundry sand as a fine aggregate in concrete production. Constr. Build. Mater. 70: 514-521. https://doi.org/10.1016/j.conbuildmat.2014.07.070

Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S. 2010. Re-usage of waste foundry sand in high-strength concrete. Waste Manage. (Oxford). 30(8-9): 1705-1713. https://doi.org/10.1016/j.wasman.2010.02.018 PMid:20219339

Mynuddin S, Mohan M, Reddy TI, Pratik Reddy N. 2018. Strength behavior of concrete produced with foundry sand as fine aggregate replacement. Int. J. Mod. Trends Eng. Sci. 5(8): 3476-3480.

Martins MA, Barros RM, da Silva LRR, dos Santos VC, Lintz RC, Gachet LA, de Lourdes Melo M, Martinez CB. 2022. Durability indicators of high-strength self-compacting concrete with marble and granite wastes and waste foundry exhaust sand using electrochemical tests. Constr. Build. Mater. 317: 125907. https://doi.org/10.1016/j.conbuildmat.2021.125907

Sabour MR, Derhamjani G, Akbari M. 2022. Mechanical, durability properties, and environmental assessment of geopolymer mortars containing waste foundry sand. Environ. Sci. Pollut. Res. Int.29(16): 24322-24333. https://doi.org/10.1007/s11356-021-17692-z PMid:34825325

Bhardwaj B, Kumar P. 2019. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr. Build. Mater. 209: 555-565. https://doi.org/10.1016/j.conbuildmat.2019.03.107

Wang C, Chen P, Xu Y, Zhang L, Luo Y, Li J, Wang Y. 2022. Investigation on the utilization of spent waterglass foundry sand into Ca(OH)2-activated slag materials considering the coating layer of dried waterglass. Constr. Build. Mater. 329: 127180. https://doi.org/10.1016/j.conbuildmat.2022.127180

Fang J, Xie J, Wang Y, Tan W, Ge W. 2023. Alkali-activated slag materials for bulk disposal of waste waterglass foundry sand: A promising approach. J. Build. Eng.63(Part A): 105422. https://doi.org/10.1016/j.jobe.2022.105422

Fernández Jiménez A, Palomo JG, Puertas F. 1999. Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 29(8): 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4

Collins FG, Sanjayan JG. 1999. Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 29(3): 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1

Bakharev T, Sanjayan JG, Cheng Y. 1999. Alkali activation of Australian slag cements. Cem. Concr. Res. 29(1): 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7

Abubakr AE, Soliman AM, Diab SH. 2020. Effect of activator nature on the impact behaviour of Alkali-Activated slag mortar. Constr. Build. Mater. 257: 119531. https://doi.org/10.1016/j.conbuildmat.2020.119531

Kai MF, Li G, Yin BB, Akbar A. 2023. Aluminum-induced structure evolution and mechanical strengthening of calcium silicate hydrates: an atomistic insight. Constr. Build. Mater. 393: 132120. https://doi.org/10.1016/j.conbuildmat.2023.132120

Zhang Z, Jia Y, Liu J. 2022. Influence of different parameters on the performance of alkali-activated slag/fly ash composite system. Materials. 15(8): 2714. https://doi.org/10.3390/ma15082714 PMid:35454407 PMCid:PMC9028861

Jin L, Huang G, Li Y, Zhang X, Ji Y, Xu Z. 2021. Positive influence of liquid sodium silicate on the setting time, polymerization, and strength development mechanism of MSWI bottom ash alkali-activated mortars. Materials. 14 (8): 1927. https://doi.org/10.3390/ma14081927 PMid:33921393 PMCid:PMC8069498

Li W, Lemougna PN, Wang K, He Y, Tong Z, Cui X. 2017. Effect of vacuum dehydration on gel structure and properties of metakaolin-based geopolymers. Ceram. Int. 43(16): 14340-14346. https://doi.org/10.1016/j.ceramint.2017.07.190

Qiu Y, Pan H, Zhao Q, Zhang J, Zhang Y, Guo W. 2022. Carbon dioxide-hardened sodium silicate-bonded sand regeneration using calcium carbide slag: The design and feasibility study. J. Environ. Chem. Eng. 10(3):107872. https://doi.org/10.1016/j.jece.2022.107872

Jiang Z, Li J, Li W. 2019. Preparation and characterization of autolytic mineral microsphere for self-healing cementitious materials. Cem. Concr. Compos. 103:112-120. https://doi.org/10.1016/j.cemconcomp.2019.04.004

ASTM C1437. 2020. Standard test mrthod for flow of hydraulic cement mortar. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/

Burciaga Díaz O, Betancourt CastilloI. 2018. Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH. Cem. Concr. Res.105:54-63. https://doi.org/10.1016/j.cemconres.2018.01.002

ASTM C348-18. 2018. Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org.

Mondal P. 2008. Nanomechanical properties of cementitious materials. Northwestern University ProQuest Dissertations Publishing.

Xie J, Chen P, Li J, Xu Y, Fang Y, Wang A, Wang J. 2022. Directly upcycling copper mining wastewater into a source of mixing water for the preparation of alkali-activated slag materials. Process Saf. Environ. Prot. 168:362-371. https://doi.org/10.1016/j.psep.2022.10.011

Martins MAB, da Silva LRR, Ranieri MGA, Barros RM, Dos Santos VC, Goncalves PC, Rodrigues MRB, Lintz RCC, Gachet LA, Martinez CB, Melo M. 2021. Physical and chemical properties of waste foundry exhaust sand for use in self-compacting concrete. Materials. 14(19):5629. https://doi.org/10.3390/ma14195629 PMid:34640026 PMCid:PMC8510119

Ashish DK, Verma SK, Ju M, Sharma H. 2023. High volume waste foundry sand self-compacting concrete - Transitioning industrial symbiosis. Process Saf. Environ. Prot. 173:666-692. https://doi.org/10.1016/j.psep.2023.03.028

Şahmaran M, Lachemi M, Erdem TK, Yücel HE. 2010. Use of spent foundry sand and fly ash for the development of green self-consolidating concrete. Mater. Struct. 44(7):1193-1204. https://doi.org/10.1617/s11527-010-9692-7

Liu Q, Zhang J, Su Y, Lü X. 2021. Variation in polymerization degree of C-A-S-H gels and its role in strength development of alkali-activated slag binders. Journal of Wuhan University of Technology-Mater. Sci. Ed. 36(6):871-879. https://doi.org/10.1007/s11595-021-2281-z

Cihangir F, Ercikdi B, Kesimal A, Deveci H, Erdemir F. 2015. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Miner. Eng. 83:117-127. https://doi.org/10.1016/j.mineng.2015.08.022

Zhu Z, Xu X, Liu R, Liu P, Tang H, Gong Y, Zhang C, Li X, Liu Y, Bai J, Chen M. 2023. Feasibility study of highly alkaline biomass ash to activate alkali-activated grouts. Constr. Build. Mater. 393:132067. https://doi.org/10.1016/j.conbuildmat.2023.132067

Kai MF, Sanchez F, Hou DS, Dai JG. 2023. Nanoscale insights into the interfacial characteristics between calcium silicate hydrate and silica. Appl. Surf. Sci. 616:156478. https://doi.org/10.1016/j.apsusc.2023.156478

Liu K, Yu R, Shui Z, Yi S, Li X, Ling G, He Y. 2020. Influence of external water introduced by coral sand on autogenous shrinkage and microstructure development of Ultra-High Strength Concrete (UHSC). Constr. Build. Mater. 252:119111. https://doi.org/10.1016/j.conbuildmat.2020.119111

Basar HM, Deveci Aksoy N. 2012). The effect of waste foundry sand (WFS. as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete. Constr. Build. Mater. 35:508-515. https://doi.org/10.1016/j.conbuildmat.2012.04.078

Ganesh Prabhu G, Hyun JH, Kim YY. 2014. Effects of foundry sand as a fine aggregate in concrete production. Constr. Build. Mater. 70:514-521. https://doi.org/10.1016/j.conbuildmat.2014.07.070

Puertas F, Palacios M, Manzano H, Dolado J, Rico A, Rodríguez J. 2011. A model for the CASH gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12):2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

Chen P, Wang J, Wang L, Xu Y. 2019. Perforated cenospheres: A reactive internal curing agent for alkali activated slag mortars. Cem. Concr. Compos. 104:103351. https://doi.org/10.1016/j.cemconcomp.2019.103351

Hu X, Shi C, Shi Z, Zhang L. 2019. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cem. Concr. Compos. 104:103392. https://doi.org/10.1016/j.cemconcomp.2019.103392

Zhang Z, Zhu Y, Zhu H, Zhang Y, Provis JL, Wang H. 2019. Effect of drying procedures on pore structure and phase evolution of alkali-activated cements. Cem. Concr. Compos. 96:194-203. https://doi.org/10.1016/j.cemconcomp.2018.12.003

Ran B, Omikrine Metalssi O, Fen Chong T, Dangla P, Li K. 2023. Pore crystallization and expansion of cement pastes in sulfate solutions with and without chlorides. Cem. Concr. Res. 166:107099. https://doi.org/10.1016/j.cemconres.2023.107099

Hu X, Shi C, Li J, Wu Z. 2021. Chloride migration in cement mortars with ultra-low water to binder ratio. Cem. Concr. Compos. 118:103974. https://doi.org/10.1016/j.cemconcomp.2021.103974

Ahmad MR, Qian L, Fang Y, Wang A, Dai J. 2023. A multiscale study on gel composition of hybrid alkali-activated materials partially utilizing air pollution control residue as an activator. Cem. Concr. Compos. 136:104856. https://doi.org/10.1016/j.cemconcomp.2022.104856

Published

2024-11-04

How to Cite

Shen, X., Chen, P., Li, S., Wang, Y., Hu, S., Pei, C., & Xie, J. (2024). Effect of pre-wetting treatment for waste waterglass foundry sand on the properties of alkali-activated slag. Materiales De Construcción, 74(355), e353. https://doi.org/10.3989/mc.2024.371123

Issue

Section

Research Articles

Funding data