Energy contribution of coal waste recycled with limestone to produce a Portland clinker
DOI:
https://doi.org/10.3989/mc.2024.376924Keywords:
Coal gangue, Valorization, Clinker, Energy gain, EcologyAbstract
Analysis has revealed that Moroccan coal gangue consists of silica, clays, and coal, making it a viable substitute for clay in clinker production. Our previous study demonstrated that the clinkering of a cement raw mix with 18.5% (wt) coal gangue and limestone produced a good Portland clinker. This clinker was close to that given by a cement raw mix of a cement plant, and which was taken as a reference-raw RR. The coal gangue contains around 8.8-11.8% coal, exhibits a calorific value of 3.77 MJ/kg and displays an exothermic effect of 67.3 J/g as determined by DSC analysis. This exothermic release is also observed in the LG cement mix. The objective of this study is to estimate the energy contribution of coal gangue in clinker production by comparing the thermochemical energy balances during clinkering up to 1450°C for the two clinker raw materials, LG and RR; our calculations indicate an energy gain of approximately 2.13%.
Downloads
References
Coal 2023. Analysis and forecast to 2026. Retrieved from https://iea.blob.core.windows.net/assets/a72a7ffa-c5f2-4ed8-a2bf-eb035931d95c/Coal_2023.pdf
Bp Energy Outlook. 2023 edition. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf
Li J, Wang J. 2019. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod.239: 117946. https://doi.org/10.1016/j.jclepro.2019.117946
Tayebi-Khorami M, Edraki M, Corder G, Golev A. 2019. Re-thinking mining waste through an integrative approach led by circular economy aspirations. J. Minerals, 9 (5): 286. https://doi.org/10.3390/min9050286
Yu JL, Meng FR, Li XC, Tahmasebi A. 2012. Power generation from coal gangue in China: Current status and development. J. Open J. Adv. Mater. 550: 443-446. https://doi.org/10.4028/www.scientific.net/AMR.550-553.443
Shuang-xi Z. 2009. Study on the reaction degree of calcined coal gangue powder in blended cement by selective solution method. J. Procedia Earth and Planetary Science, 1(1): 634-639. https://doi.org/10.1016/j.proeps.2009.09.100
Addou R, Hannawi K, Agbodjan WP, Zenasni M. 2015. Caractérisation des déchets stériles de charbon de la mine de Jerada (Est du Maroc), en vue de l'élaboration d'un éco-matériau en génie civil. Mécanique et Electrique pour l'Energie (CMEEE 2015).
Xu H, Song W, Cao W, Shao G, Lu H, Yang D, Chen D, Zhang R. 2017. Utilization of coal gangue for the production of brick. J. Material cycles and waste management. 19: 1270-1278. https://doi.org/10.1007/s10163-016-0521-0
Yang M, Guo Z, Deng Y, Xing X, Qiu K, Long J, Li J. 2012. Preparation of CaO-Al2O3-SiO2 glass ceramics from coal gangue. Int. J. Miner. Process, 102: 112-115. https://doi.org/10.1016/j.minpro.2011.11.004
Cembureau and the United Nations, Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050. Retrieved from https://cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf
Zhao H, Zhang N, Wang HJ. 2014. Power consumption prediction modeling of cement manufacturing based on the improved multiple non-linear regression algorithm. Appl. Mech. Mater.687: 5185-5189. https://www.scientific.net/AMM.687-691.5185 https://doi.org/10.4028/www.scientific.net/AMM.687-691.5185
Rahman A, Rasul MG, Khan MMK, Sharma S. 2015. Recent development on the uses of alternative fuels in cement manufacturing process. J. Fuel. 145: 84-99. https://doi.org/10.1016/j.fuel.2014.12.029
Kermeli K, Edelenbosch OY, Crijns-Graus W, van Ruijven BJ, Mima S, van Vuuren DP, Worrell E. 2019. The scope for better industry representation in long-term energy models: Modeling the cement industry. J. Appl. Energy. 240:964-985. https://doi.org/10.1016/j.apenergy.2019.01.252
International Energy Agency. 2023. World energy outlook. Retrieved from https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf
Belkheiria D, Diouri A, Taibi M, Sassi O, Aride J. 2015. Recycling of Moroccan coal gangue in the elaboration of a Portland clinker. J. Mater. Environ. Sci.6(6): 1570-1577.
Chhaiba S, Blanco-Varela MT, Diouri A. 2018. Moroccan oil shale and coal waste as alternative raw materials in Portland cement clinker manufacture. Clinkerisation reactions and clinker characterisation. J. Materiales de Construcción. 68 (331): e166. https://doi.org/10.3989/mc.2018.07017
Wang XT, Lu B, Xu L, Li CY, Lin L, Huang J. 2013. Lower heating value estimation of coal gangue through proximate analysis data based on GB/T 212-2008. J. Advanced Materials Research. 726: 2699-2703. https://doi.org/10.4028/www.scientific.net/AMR.726-731.2699
Taha Y, Elghali A, Derhy M, Amrani M, Hakkou R, Benzaazoua, M. 2023. Towards an integrated approach for zero coal mine waste storage: solutions based on materials circularity and sustainable resource governance. Mineral Processing and Extractive Metallurgy Review. 44 (6): 375-388. https://doi.org/10.1080/08827508.2022.2084733
Taha Y, Benzaazoua M, Hakkou R, Mansori M. 2017. Coal mine wastes recycling for coal recovery and eco-friendly bricks production. J. Miner. Eng. 107:123-138. https://doi.org/10.1016/j.mineng.2016.09.001
Kuntze, R.A. 2009. Gypsum: Connecting Science and Technology. ASTM MNL 67, ASTM International. https://doi.org/10.1520/MNL67-EB
Gunasekaran S, Anbalagan G. 2007. Thermal decomposition of natural dolomite. J. B. Mater. Sci. 30: 339-344. https://doi.org/10.1007/s12034-007-0056-z
Gualtieri AF, Ferrari S. 2006. Kinetics of illite dehydroxylation. J. Phys.Chem.Miner, 33: 490-501. https://doi.org/10.1007/s00269-006-0092-z
Kaantee U, Zevenhoven R, Backman R, Mikko H. 2003. Modelling a cement manufacturing process to study possible impacts of alternative fuels. Ciments Betons Platres Chaux. 46-52.
Mohalik NK, Mandal S, Ray SK, Khan AM, Mishra D, Pandey JK. 2022. TGA/DSC study to characterise and classify coal seams conforming to susceptibility towards spontaneous combustion. Int. J. Min. Sci. Technol. 32(1): 75-88. https://doi.org/10.1016/j.ijmst.2021.12.002
McBride BJ. 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field.
Blanc P, Vieillard P, Gailhanou H, Gaboreau S, Gaucher E, Fialips CI, Made B, Giffaut E. 2015. A generalized model for predicting the thermodynamic properties of clay minerals. Am. J. Sci. 315 (8): 734-780. https://doi.org/10.2475/08.2015.02
Gottschalk M. 1997. Internally Consistent Thermodynamic Data for rock-forming minerals in the system Si02-Ti02-Al203-Fe203-CaO-MgO-FeO-K20-Na20-H20-C02. Eur. J. Mineral. 9:175-223cp dolomite.
Leśniak B, Łukasz S, Jakubina G. 2013. Institute for chemical processing of coal, zabrze, poland. The determination of the specific heat capacity of coal based on literature data. Chemik. 67(6): 560-571.
Eisermann W, Johnson P, Conge, WL. 1980. Estimating thermodynamic properties of coal, char, tar and ash. Fuel Process. Technol. 3(1): 39-53. https://doi.org/10.1016/0378-3820(80)90022-3
Lothenbach B, Matschei T, Möschner G, Glasser FP. 2008. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38(1): 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017
Thoenen T, Kulik D. 2003. Nagra/PSI chemical thermodynamic database 01/01 for the GEM-Selektor (V. 2-PSI) geochemical modeling code. PSI, Villingen.
Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T. 2002. Chemical thermodynamic data base (01/01). Nagra/PSI Chemical Thermodynamic Data Base, 1(01): 565. https://doi.org/10.1524/ract.2002.90.9-11_2002.805
Hanein T, Glasser FP, Bannerman MN.2020. Thermodynamic data for cement clinkering. J. Cement and Concrete Research. 132:106043. https://doi.org/10.1016/j.cemconres.2020.106043
Haas Jr JL, Robinson Jr GR, Hemingway BS. 1981. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K. J. Phys. Chem. Ref. Data. 10(3): 575-670. https://doi.org/10.1063/1.555645
Bonnickson KR. 1955. High temperature heat contents of aluminates of calcium and magnesium. J. Phys. Chem. 59 (3): 220-221. https://doi.org/10.1021/j150525a006
Babushkin VI, Matveev GM, Mchedlov-Petrosian OP. 1985. Thermodynamics of silicates. https://doi.org/10.1007/978-3-642-69320-5 PMid:3975147
Chellai H, Essamoud R. Rjimati E. 2011. Le bassin houiller de Jerada (Chaîne des Horsts, Maroc oriental) / The Jerada Coal Basin (Horst Chain, Eastern Morocco). 1 (556-564): 331-335.
Darmane Y, Alaoui A, Kitane S, Bennajah M, Daramy A, Cherkaoui M. 2009. Recycling the slagheap of an old coal mine (Morocco). Sep. Purif. Technol. 68 (1): 125-128. https://doi.org/10.1016/j.seppur.2009.04.026
Shen J, Zhu S, Liu X, Zhang H, Tan, J. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manag. 51(5): 983-987. https://doi.org/10.1016/j.enconman.2009.11.039
Lawal AI, Aladejare AE, Onifade M, Bada S, Idris MA. 2021. Predictions of elemental composition of coal and biomass from their proximate analyses using ANFIS, ANN and MLR. Int. J. Coal Sci. Technol. 8: 124-140. https://doi.org/10.1007/s40789-020-00346-9
Shim SH, Lee TH, Yang SJ, Noor NBM, Kim JHJ. 2021. Calculation of cement composition using a new model compared to the bogue model. Materials. 14 (16):4663. https://doi.org/10.3390/ma14164663 PMid:34443190 PMCid:PMC8401079
Belkheiri D, Taibi M, Diouri A, Boukhari A, Aride A, Sassi O. 2014. Characterization of Moroccan coal waste: valorization in the elaboration of the Portland clinker. MATEC Web of Conferences 11:01009. https://doi.org/10.1051/matecconf/20141101009
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.