Contribución energética de los residuos de carbón reciclados con piedra caliza para producir un clínker de Portland

Autores/as

DOI:

https://doi.org/10.3989/mc.2024.376924

Palabras clave:

Residuos de carbón, Valorización, Clinker, Ganancia de energía, Ecología

Resumen


El análisis ha revelado que los residuos de carbón marroquí consisten en sílice, arcillas y carbón, lo que los convierte en un sustituto viable de la arcilla en la producción de clínker. Nuestro estudio previo demostró que la clinkerización de una mezcla cruda de cemento con un 18.5% de residuos de carbón y piedra caliza produjo un buen clínker de Portland. Este clínker fue similar al obtenido por una mezcla cruda de un cemento Portland. Los residuos de carbón contienen alrededor del 8.8-11.8% de carbón, tienen un valor calorífico de 3.77 MJ/kg y muestran un efecto exotérmico de 67.3 J/g según el análisis DSC. El objetivo de este estudio es estimar la contribución energética de los residuos de carbón en la producción de clínker mediante la comparación de los balances de energía termoquímica durante la clinkerización hasta 1450°C para los dos materiales crudos de clínker, LG y RR; nuestros cálculos indican una ganancia energética de aproximadamente 2.13%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Coal 2023. Analysis and forecast to 2026. Retrieved from https://iea.blob.core.windows.net/assets/a72a7ffa-c5f2-4ed8-a2bf-eb035931d95c/Coal_2023.pdf

Bp Energy Outlook. 2023 edition. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf

Li J, Wang J. 2019. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod.239: 117946. https://doi.org/10.1016/j.jclepro.2019.117946

Tayebi-Khorami M, Edraki M, Corder G, Golev A. 2019. Re-thinking mining waste through an integrative approach led by circular economy aspirations. J. Minerals, 9 (5): 286. https://doi.org/10.3390/min9050286

Yu JL, Meng FR, Li XC, Tahmasebi A. 2012. Power generation from coal gangue in China: Current status and development. J. Open J. Adv. Mater. 550: 443-446. https://doi.org/10.4028/www.scientific.net/AMR.550-553.443

Shuang-xi Z. 2009. Study on the reaction degree of calcined coal gangue powder in blended cement by selective solution method. J. Procedia Earth and Planetary Science, 1(1): 634-639. https://doi.org/10.1016/j.proeps.2009.09.100

Addou R, Hannawi K, Agbodjan WP, Zenasni M. 2015. Caractérisation des déchets stériles de charbon de la mine de Jerada (Est du Maroc), en vue de l'élaboration d'un éco-matériau en génie civil. Mécanique et Electrique pour l'Energie (CMEEE 2015).

Xu H, Song W, Cao W, Shao G, Lu H, Yang D, Chen D, Zhang R. 2017. Utilization of coal gangue for the production of brick. J. Material cycles and waste management. 19: 1270-1278. https://doi.org/10.1007/s10163-016-0521-0

Yang M, Guo Z, Deng Y, Xing X, Qiu K, Long J, Li J. 2012. Preparation of CaO-Al2O3-SiO2 glass ceramics from coal gangue. Int. J. Miner. Process, 102: 112-115. https://doi.org/10.1016/j.minpro.2011.11.004

Cembureau and the United Nations, Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050. Retrieved from https://cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf

Zhao H, Zhang N, Wang HJ. 2014. Power consumption prediction modeling of cement manufacturing based on the improved multiple non-linear regression algorithm. Appl. Mech. Mater.687: 5185-5189. https://www.scientific.net/AMM.687-691.5185 https://doi.org/10.4028/www.scientific.net/AMM.687-691.5185

Rahman A, Rasul MG, Khan MMK, Sharma S. 2015. Recent development on the uses of alternative fuels in cement manufacturing process. J. Fuel. 145: 84-99. https://doi.org/10.1016/j.fuel.2014.12.029

Kermeli K, Edelenbosch OY, Crijns-Graus W, van Ruijven BJ, Mima S, van Vuuren DP, Worrell E. 2019. The scope for better industry representation in long-term energy models: Modeling the cement industry. J. Appl. Energy. 240:964-985. https://doi.org/10.1016/j.apenergy.2019.01.252

International Energy Agency. 2023. World energy outlook. Retrieved from https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf

Belkheiria D, Diouri A, Taibi M, Sassi O, Aride J. 2015. Recycling of Moroccan coal gangue in the elaboration of a Portland clinker. J. Mater. Environ. Sci.6(6): 1570-1577.

Chhaiba S, Blanco-Varela MT, Diouri A. 2018. Moroccan oil shale and coal waste as alternative raw materials in Portland cement clinker manufacture. Clinkerisation reactions and clinker characterisation. J. Materiales de Construcción. 68 (331): e166. https://doi.org/10.3989/mc.2018.07017

Wang XT, Lu B, Xu L, Li CY, Lin L, Huang J. 2013. Lower heating value estimation of coal gangue through proximate analysis data based on GB/T 212-2008. J. Advanced Materials Research. 726: 2699-2703. https://doi.org/10.4028/www.scientific.net/AMR.726-731.2699

Taha Y, Elghali A, Derhy M, Amrani M, Hakkou R, Benzaazoua, M. 2023. Towards an integrated approach for zero coal mine waste storage: solutions based on materials circularity and sustainable resource governance. Mineral Processing and Extractive Metallurgy Review. 44 (6): 375-388. https://doi.org/10.1080/08827508.2022.2084733

Taha Y, Benzaazoua M, Hakkou R, Mansori M. 2017. Coal mine wastes recycling for coal recovery and eco-friendly bricks production. J. Miner. Eng. 107:123-138. https://doi.org/10.1016/j.mineng.2016.09.001

Kuntze, R.A. 2009. Gypsum: Connecting Science and Technology. ASTM MNL 67, ASTM International. https://doi.org/10.1520/MNL67-EB

Gunasekaran S, Anbalagan G. 2007. Thermal decomposition of natural dolomite. J. B. Mater. Sci. 30: 339-344. https://doi.org/10.1007/s12034-007-0056-z

Gualtieri AF, Ferrari S. 2006. Kinetics of illite dehydroxylation. J. Phys.Chem.Miner, 33: 490-501. https://doi.org/10.1007/s00269-006-0092-z

Kaantee U, Zevenhoven R, Backman R, Mikko H. 2003. Modelling a cement manufacturing process to study possible impacts of alternative fuels. Ciments Betons Platres Chaux. 46-52.

Mohalik NK, Mandal S, Ray SK, Khan AM, Mishra D, Pandey JK. 2022. TGA/DSC study to characterise and classify coal seams conforming to susceptibility towards spontaneous combustion. Int. J. Min. Sci. Technol. 32(1): 75-88. https://doi.org/10.1016/j.ijmst.2021.12.002

McBride BJ. 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field.

Blanc P, Vieillard P, Gailhanou H, Gaboreau S, Gaucher E, Fialips CI, Made B, Giffaut E. 2015. A generalized model for predicting the thermodynamic properties of clay minerals. Am. J. Sci. 315 (8): 734-780. https://doi.org/10.2475/08.2015.02

Gottschalk M. 1997. Internally Consistent Thermodynamic Data for rock-forming minerals in the system Si02-Ti02-Al203-Fe203-CaO-MgO-FeO-K20-Na20-H20-C02. Eur. J. Mineral. 9:175-223cp dolomite.

Leśniak B, Łukasz S, Jakubina G. 2013. Institute for chemical processing of coal, zabrze, poland. The determination of the specific heat capacity of coal based on literature data. Chemik. 67(6): 560-571.

Eisermann W, Johnson P, Conge, WL. 1980. Estimating thermodynamic properties of coal, char, tar and ash. Fuel Process. Technol. 3(1): 39-53. https://doi.org/10.1016/0378-3820(80)90022-3

Lothenbach B, Matschei T, Möschner G, Glasser FP. 2008. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38(1): 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017

Thoenen T, Kulik D. 2003. Nagra/PSI chemical thermodynamic database 01/01 for the GEM-Selektor (V. 2-PSI) geochemical modeling code. PSI, Villingen.

Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T. 2002. Chemical thermodynamic data base (01/01). Nagra/PSI Chemical Thermodynamic Data Base, 1(01): 565. https://doi.org/10.1524/ract.2002.90.9-11_2002.805

Hanein T, Glasser FP, Bannerman MN.2020. Thermodynamic data for cement clinkering. J. Cement and Concrete Research. 132:106043. https://doi.org/10.1016/j.cemconres.2020.106043

Haas Jr JL, Robinson Jr GR, Hemingway BS. 1981. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K. J. Phys. Chem. Ref. Data. 10(3): 575-670. https://doi.org/10.1063/1.555645

Bonnickson KR. 1955. High temperature heat contents of aluminates of calcium and magnesium. J. Phys. Chem. 59 (3): 220-221. https://doi.org/10.1021/j150525a006

Babushkin VI, Matveev GM, Mchedlov-Petrosian OP. 1985. Thermodynamics of silicates. https://doi.org/10.1007/978-3-642-69320-5 PMid:3975147

Chellai H, Essamoud R. Rjimati E. 2011. Le bassin houiller de Jerada (Chaîne des Horsts, Maroc oriental) / The Jerada Coal Basin (Horst Chain, Eastern Morocco). 1 (556-564): 331-335.

Darmane Y, Alaoui A, Kitane S, Bennajah M, Daramy A, Cherkaoui M. 2009. Recycling the slagheap of an old coal mine (Morocco). Sep. Purif. Technol. 68 (1): 125-128. https://doi.org/10.1016/j.seppur.2009.04.026

Shen J, Zhu S, Liu X, Zhang H, Tan, J. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manag. 51(5): 983-987. https://doi.org/10.1016/j.enconman.2009.11.039

Lawal AI, Aladejare AE, Onifade M, Bada S, Idris MA. 2021. Predictions of elemental composition of coal and biomass from their proximate analyses using ANFIS, ANN and MLR. Int. J. Coal Sci. Technol. 8: 124-140. https://doi.org/10.1007/s40789-020-00346-9

Shim SH, Lee TH, Yang SJ, Noor NBM, Kim JHJ. 2021. Calculation of cement composition using a new model compared to the bogue model. Materials. 14 (16):4663. https://doi.org/10.3390/ma14164663 PMid:34443190 PMCid:PMC8401079

Belkheiri D, Taibi M, Diouri A, Boukhari A, Aride A, Sassi O. 2014. Characterization of Moroccan coal waste: valorization in the elaboration of the Portland clinker. MATEC Web of Conferences 11:01009. https://doi.org/10.1051/matecconf/20141101009

Publicado

2024-11-04

Cómo citar

Belkheiri, D., & Chhaiba, S. (2024). Contribución energética de los residuos de carbón reciclados con piedra caliza para producir un clínker de Portland. Materiales De Construcción, 74(355), e352. https://doi.org/10.3989/mc.2024.376924

Número

Sección

Artículos