The mineralogical composition of sandstone and its effect on sulphur dioxide deposition


  • Urs Müller Federal Institute for Materials Research and Testing (BAM), Berlin



sandstone, pollutants, deposition, deterioration, catalyst


Air pollutants often accelerate stone deterioration in historical buildings and monuments in urban areas. The pollutants are themselves the products of fossil fuel combustion and intensive farming. While this trend seems to have been curbed by strict emission laws in the European Union, in most developing and emerging countries air pollution is an ongoing process due to increasing energy needs and vehicle traffic. Many factors condition natural stone behaviour with respect to gaseous pollutants. Two of the more prominent of such factors are the composition of the atmosphere and the type of stone. Due to their porosity, sandstones are particularly vulnerable to air pollutant attack. Many of the reactions between non-carbonaceous sandstones and these gases are not well understood, however. The present study aimed to acquire an understanding of the processes and factors governing sandstone behaviour when exposed to sulphur dioxide. Seven different sandstones from southern and eastern Germany were analyzed for the study. The binder composition of the stones varied significantly. They also exhibited completely different behaviour in connection with SO2 sorption. Interestingly, while the amount of SO2 deposited was unrelated to the specific surface area of the sandstones, this parameter was closely correlated to the iron oxide content. Iron oxide phases are believed to act as a catalyst in the oxidation of SO2 to SO3. The type and amount of clay mineral, in turn, was found to have no significant impact on initial SO2 deposition in sandstones.


Download data is not yet available.


[1] Pettijohn, F. J., P. E. Potter, y R. Siever: Sand and Sandstone, 2ª ed., Springer Verlag, Nueva York, 1987, p. 553.

[2] Mausfeld, S. A. y G. Grassegger: "Abbauprozesse an Feldspäten und Tonmineralen unter den Bedingungen der Bauwerksverwitterung". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, vol. 143, 1992, p. 23-39.

[3] Grassegger, G.: “Mineralogische Prozesse bei der Bausteinverwitterung”, En: Wittenburg, C., A. Behlen, M. Steiger y W. Dannecker (ed.): Denkmalpflege und Naturwissenschaft, Natursteinkonservierung II, Snethlage, R.: Verbundforschungsprojekt Steinzerfall und Steinkonservierung, Fraunhofer IRB Verlag, 1998, p. 119-136.

[4] Grassegger, G.: “Decay mechanisms of natural building stones on monuments - A review of the latest theories”. En: Große, C. (ed): Werkstoffe und Werkstoffprüfung im Bauwesen, Hamburgo, Libri BOD, 1999, p. 54-81.

[5] Müller, U., E. Althaus y E., Karotke: “Einfluß des Porengefüges auf die Schadstoffverteilung in Werk-Sandsteinen”. En: WENZEL, F. (ed.): Erhalten historisch bedeutsamer Bauwerke, Jahrbuch 1997/98, Berlín, Ernst & Sohn, 2000, p. 107-120.

[6] Winkler, E. M.: "Important agents of weathering for building and monumental stone". Engineering Geology, vol. 1, no 5, 1966, p. 381-400. doi:10.1016/0013-7952(66)90003-2

[7] Niesel, K.: "Zur Verwitterung von Baustoffen in schwefeldioxidhaltiger Atmosphäre - Literaturdiscussion". Fortschritte der Mineralalogie, vol. 57, 1979, p. 68-124.

[8] Webb, A. H., R. J. Bawden, A. K. Busby y J. N. Hopkins: "Studies on the effects of air pollution on limestone degradation in Great Britain". Atmospheric Environment. Part B. Urban Atmosphere, vol. 26, no 2, 1992, p. 165-181. doi:10.1016/0957-1272(92)90020-S

[9] Cobourn, W. G., K. L. Gauri, S. Tambe, S. Li y E. Saltik: "Laboratory measurements of sulfur dioxide deposition velocity on marble and dolomite stone surfaces". Atmospheric Environment. Part B. Urban Atmosphere, vol. 27, no 2, 1993, p. 193-201. doi:10.1016/0957-1272(93)90005-Q

[10] Dolske, D. A.: "Deposition of atmospheric pollutants to monuments, statues, and buildings". Science of the Total Environment, vol. 167, no 1-3, 1995, p. 15-31. doi:10.1016/0048-9697(95)04566-J

[11] Malaga-Starzec, K.: “Microscopic studies of the first steps in chemical weathering of marble, limestone and sandstone”. En: Stamatakis, M., B. Georgali, D. Fragoulis y E. E. Toumbakari (ed.): Proceedings of 8th Euroseminar Microscopy Applied to Buildings Materials, Atenas, 2001, p. 21-27.

[12] Malaga-Starzec, K., I. Panas y O. Lindqvist: "Model study of initial adsorption of SO2 on calcite and dolomite". Applied Surface Science, vol. 222, no 1-4, 2004, p. 82-88. doi:10.1016/j.apsusc.2003.08.019

[13] Dannecker, W. y M. Steiger: “Der Einfluß von Luftschadstoffen auf die Verwitterung von Natursteinen”. En: SNETHLAGE, R. (ed): Jahresberichte Steinzerfall - Steinkonservierung 1989, Berlín, Verlag Ernst & Sohn, 1991, p. 115-129.

[14] Wittenburg, C., A. Behlen, M. Steiger y W. Dannecker: “Die Messung von Luftschadstoffen und deren Deposition auf verschiedene Sandsteine an historischen Bauwerken”. En: Wittenburg, C., A. Behlen, M. Steiger y W. Dannecker (ed.), Denkmalpflege und Naturwissenschaft, Natursteinkonsrevierung II, Snethlage, R.: Verbundforschungsprojekt Steinzerfall und Steinkonservierung, Fraunhofer IRB Verlag 1998, p. 27-60.

[15] Haneef, S. J., J. B. Johnson, C. Dickinson, G. E. Thompson y G. C. Wood: "Effect of dry deposition of NOx and SO2 gaseous pollutants on the degradation of calcareous building stones". Atmospheric Environment. Part A. General Topics, vol. 26, no 16, 1992, p. 2963-2974. doi:10.1016/0960-1686(92)90288-V

[16] Haneef, S. J., M. S. Jones, J. B. Johnson, G. E. Thompson y G. C. Wood: "Effects of air pollution on historic buildings and monuments (1986-1990). Scientific basis for conservation: Laboratory chamber studies". European Cultural Heritage Newsletter on Research, vol. 7, no 1-4, 1993, p. 2-10.

[17] Böke, H., H. Göktürk y E. N. Caner-Saltik: “Effect of particulate matter on sulphation of calcareous stone in humid atmosphere containing sulphur dioxide”. En: RIEDERER, J. (ed.): Proceedings of 8th International Congress on Deterioration and Conservation of Stone, Berlín, 1996, p. 407-414.

[18] Moore, D. M. y R. C. J. Reynolds: X-ray diffraction and the identification and analysis of clay minerals, Oxford University Press, Oxford, United Kingdom, 1989, p. 332.

[19] Tributh, H. y G. Lagaly: “Identifizierung und Charakterisierung von Tonmineralen, Berichte der DTTG”, vol. 1, Deutsche Ton- und Tonmineralgruppe e. V., Giessen (Alemania), 1991, p. 162.

[20] Ausset, P., J. L. Crovisier, M. Del Monte, V. Furlan, F. Girardet, C. Hammecker, D. Jeannette y R. A. Lefevre: "Experimental study of limestone and sandstone sulphation in polluted realistic conditions: The Lausanne Atmospheric Simulation Chamber (LASC)". Atmospheric Environment, vol. 30, no 18, 1996, p. 3197-3207. doi:10.1016/1352-2310(95)00495-5

[21] Urone, P., H. Lutsep, C. M. Noyes y J. F. Parcher: "Static studies of sulfur dioxide reactions in air". Environmental Science and Technology, vol. 2, no 8, 1968, p. 611-618. doi:10.1021/es60020a002

[22] Helgeson, H. C., R. M. Garrels y F. T. MacKenzie: "Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - II. Applications". Geochimica et Cosmochimica Acta, vol. 33, no 4 (1969), p. 455-481. doi:10.1016/0016-7037(69)90127-6

[23] Bai, Y., G. E. Thompson, S. Martínez Ramírez y S. Brueggerhoff: “Mineralogical study of salt crusts formed on historic building stones”. The Science of the Total Environment, vol. 302, (2003), p. 247–251. doi:10.1016/S0048-9697(02)00339-X

[24] Martínez Ramírez, S., F. Puertas, M. T. Blanco Verala y G. E. Thomson: “Effect of dry deposition of pollutants on the degradation of lime mortars with sepiolite”. Cement and Concrete Research, vol. 28, no 1, (1998), p. 125-133. doi:10.1016/S0008-8846(97)00255-X




How to Cite

Müller, U. (2008). The mineralogical composition of sandstone and its effect on sulphur dioxide deposition. Materiales De Construcción, 58(289-290), 81–95.



Research Articles