Evaluating the mechanical performance of Very Thin Asphalt Overlay (VTAO) as a sustainable rehabilitation strategy in urban pavements
DOI:
https://doi.org/10.3989/mc.2017.05016Keywords:
Adherence, Durability, Fatigue, Permeability, Mechanical propertiesAbstract
Very Thin Asphalt Overlay (VTAO) has been introduced as an alternative to traditional thick overlays, seal coats, and micro-surfacings. Nonetheless, there are some challenges that still remain regarding the application of VTAOs (such as mixture type, cohesiveness, wear resistance, cracking and durability), particularly in heavy traffic urban areas. Therefore, this paper presents an extensive comparative evaluation of the mechanical performance, durability and safety issues (cohesiveness, adhesiveness, ageing, cracking, plastic deformation, permeability, macrotexture, skid and wear resistance, and fuel resistance) of a VTAO (20 mm thick) and a high performance BBTM 11B (35 mm thick), commonly used as an open-graded mixture for pavement overlays. The results demonstrated that VTAO is an appropriate material for urban pavements as it provides good durability and resistance to the propagation of defects. Nonetheless, further studies are required to improve its behavior under distresses related to plastic deformations and safety properties.
Downloads
References
Alonso, A.; Tejeda, E.; Moreno, F.; Rubio, M.C.; Medel, E. (2013). A comparative study of natural zeolite and synthetic zeolite as an additive in warm asphalt mixes. Mater. Construcc 63 [310], 195-217.
González-Taboada, I.; González-Fonteboa, B.; Martínez- Abella, F.; Carro-López, D. (2016). Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc, 66 [323], e089. https://doi.org/10.3989/mc.2016.06415
De La Garza, J.M.; Akyildiz, S.; Bish, D.R.; Krueger D.A. (2011) Network-level optimization of pavement maintenance renewal strategies. Adv. Eng. Informatics. 25 [4], 699–712. https://doi.org/10.1016/j.aei.2011.08.002
Chen, D.H.; Scullion, T. (2015) Very Thin Overlays in Texas. Constr. Build. Mater. 95, 108–16. https://doi.org/10.1016/j.conbuildmat.2015.07.157
Sandberg, U.; Kragh, J.; Goubert, L.; Bendtsen, H.; Bergiers, A.; Biligiri, K.P.; Karlsson, R.; Nielsen, E.; Olesen, E.; Vansteenkiste, S. (2011) Optimization of thin asphalt layers: state-of-the-art review. ERA-NET Road Project, European Commission – FP7, 7th Framework Programme, Deliverable No. 1.
Watson, D.E.; Heitzman, M. (2014) Thin asphalt concrete overlays: a synthesis of highway practice, National Cooperative Highway Research Program (NCHRP) SYNTHESIS 464, WASHINGTON, D.C., USA. (access November 21, 2016 <http:// onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_464.pdf>).
Newcomb, D.E. Thin asphalt overlays for pavement preservation, in: National Asphalt Pavement Association IS 135, National Asphalt Pavement Association, Lanham, Md., 2009 (access November 21, 2016 <http://hawaiiasphalt.org/wp/wp-content/uploads/IS-135-Thin-Asphalt-Overlaysfor-Pavement-Preservation.pdf>).
Arellano, M.; Scullion, T.; Blackmore, T. (2015) Guidelines on the use of thin surface mixes for pavement preservation. In: Proceedings of Transportation Research Board 94th Annual Meeting. Washington DC, USA.
Hajj, E.Y.; Sebaaly, P.E.; Habbouche, J. (2016) Laboratory evaluation of thin asphalt concrete overlays for pavement preservation. Report No. SOLARIS-201601, Department of Civil and Environmental Engineering, University of Nevada, Reno, USA.
Mogawer, W.S.; Austerman, A.J.; Underwood, S. (2016) Effect of Binder Modification on the Performance of an Ultra-Thin Overlay Pavement Preservation Strategy, Transp. Res. Rec. J. Transp. Res. Board 2550, 1–7. https://doi.org/10.3141/2550-01
Read, J.; Whiteoak, D. (2003) The Shell Bitumen Handbook, fifith ed., Thomas Telford, London, (2003).
EN 13108-2. (2007) Bituminous mixtures, Material Specifications – Part 2: Asphalt Concrete for Very Thin Layers, AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
EN 13108-1. (2008) Bituminous mixtures, Material Specifications – Part 1: Asphalt Concrete, AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
Pérez Jiménez, F.; Miró Recasens, R. (1994) New methodology for asphalt binder characterisation: the UCL method. Revista Técnica de la Asociación Espa-ola de la Carretera 73, 27–48.
EN 12697-17. (2007) Bituminous mixtures. Test methods for hot mix asphalt. Part 17: Particle loss of porous asphalt specimen. AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
Miró, R.; Pérez-Jiménez, F. (2001) Procedure for the evaluation of asphalt binders ageing in contact with aggregates and application of this procedure to analyze the influence of the aggregate type on binder ageing. Road. Mater. Pavement. Des 2 [1], 97–110. https://doi.org/10.1080/14680629.2001.9689895
EN 12697-25. (2006) Method B: Bituminous mixtures. Test methods for hot mix asphalt – Part 25: Cyclic compression test. AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
Moreno-Navarro, F.; Rubio-Gámez M.C. (2013) UGRFACT test for the study of fatigue cracking in bituminous mixes. Constr. Build. Mater 43, 184–90. https://doi.org/10.1016/j.conbuildmat.2013.02.024
Moreno, F.; Rubio, M.C. (2013) Effect of aggregate nature on the fatigue-cracking behavior of asphalt mixes. Mater. Des 47, 61–7. https://doi.org/10.1016/j.matdes.2012.12.048
Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2014) Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements. Constr. Build. Mater 53, 182–9. https://doi.org/10.1016/j.conbuildmat.2013.11.101
Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2015) Exploring the recovery of fatigue damage in bituminous mixtures: the role of healing. Road. Mater. Pavement. Des 16, 75–89. https://doi.org/10.1080/14680629.2015.1029706
Moreno-Navarro, F.; Rubio-Gámez, M.C. (2014) Mean damage parameter for the characterization of fatigue cracking behavior in bituminous mixes. Mater. Des 54, 748–754. https://doi.org/10.1016/j.matdes.2013.09.004
CEDEX. (2000). Permeabilidad in situ de pavimentos drenantes con el permeámetro LCS, NLT-327/00, Dirección General de Carreteras, Madrid, Spain.
Fernández-Barrera, A.H.; Castro-Fresno, D.; Rodríguez- Hernández, J.; Calzada-Pérez. M.A. (2008) Infiltration Capacity Assessment of Urban Pavements Using the LCS Permeameter and the CP Infiltrometer. J. Irrig. Drain. Eng 134, 659-665. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(659)
Georgiou, P.; Loizos, A. (2014) A laboratory compaction approach to characterize asphalt pavement surface friction performance. Wear 311, 114–22. https://doi.org/10.1016/j.wear.2013.12.028
CEDEX. (2000). Medida de la macrotextura superficial de un pavimento por la técnica volumétrica, NLT- 335/00, Dirección General de Carreteras, Madrid, Spain.
EN 1097-8. (2009) Tests for mechanical and physical properties of aggregates. Determination of the polished stone value. AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
EN 12697-43. (2006) Bituminous mixtures - Test methods for hot mix asphalt - Part 43: Resistance to fuel. AENOR, Asociación Espa-ola de Normalización y Certificación, Madrid, Spain.
Wood, T.J.; Cole, M.K. (2013). Stripping of hot-mix asphalt pavements under chip seals. Report No. MN/RC 2013- 08, Minnesota Department of Transportation, Research Services, St. Paul, Minnesota, USA.
Moreno-Navarro, F.; Sol-Sánchez, M.; Jiménez del Barco, A.; Rubio-Gámez, M. C. (2015) Analysis of the influence of binder properties on the mechanical response of bituminous mixtures. Int. J. Pavement. Eng. 1-10.
Jiménez del Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; & Rubio-Gámez, M.C. (2016). Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc, 66 [323], 1-9. https://doi.org/10.3989/mc.2016.08815
Barker, W.R.; Bianchini, A.; Brown, E.R.; & Gonzales, C.R. (2011) Minimum thickness requirements for asphalt surface course and base layer in airfield pavements. Final report No. ERDC/GSL-TR-11-27, Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, Washington DC, USA. https://doi.org/10.21236/ADA548676
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.