Preparation of β-belite using liquid alkali silicates
DOI:
https://doi.org/10.3989/mc.2017.10816Keywords:
Dicalcium silicate, Alkali, Silica Fume, Limestone, X-ray Diffraction (XRD)Abstract
The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite.
Downloads
References
Gartner, E. (2004) Industrially interesting approaches to "low CO2" cements. Cem. Concr. Res. 34 (9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021
Schneider, M.; Romer, M.; Tschudin ,M.; Bolio, H. (2011) Sustainable cement production—present and future. Cem. Concr. Res. 41 (7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
Chatterjee, A.K. (1996) High belite cements—Present status and future technological options: Part I. Cem. Concr. Res. 26 (8), 1213 -1225. https://doi.org/10.1016/0008-8846(96)00099-3
Bensted, J. (1978) Gamma-dicalcium silicate and its hydraulicity. Cem. Concr. Res. 8 (1), 73–76. https://doi.org/10.1016/0008-8846(78)90059-5
Kriskova, L.; Pontikes, Y.; Zhang, F.; Cizer, Ö.; Jones, P.T.; Van Balen, K.; Blanpain, B. (2014) Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem. Concr. Res. 55, 59–68. https://doi.org/10.1016/j.cemconres.2013.10.004
Rodrigues, F.A. (2003) Synthesis of chemically and structurally modified dicalcium silicate. Cem. Concr. Res. 33 (6), 823–827. https://doi.org/10.1016/S0008-8846(02)01065-7
Kurdowski, W.; Duszak, S.; Trybalska, B. (1997) Belite produced by means of low-temperature synthesis. Cem. Concr. Res. 27 (1), 51–62. https://doi.org/10.1016/S0008-8846(96)00198-6
Kacimi, L.; Simon-Masseron ,A.; Salem, S.; Ghomari, A.; Derriche, Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 (7), 559–565. https://doi.org/10.1016/j.cemconres.2009.02.004
Pimraksa, K.; Hanjitsuwan, S.; Chindaprasirt, P. (2009) Synthesis of belite cement from lignite fly ash. Ceram. Int. 35 (6), 2415–2425. https://doi.org/10.1016/j.ceramint.2009.02.006
Morsli, K.; De la Torre, A.G.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2009) Preparation and characterization of alkali-activated white belite cements. Mater. Construcc. 59 (294), 19–29.
Morsli, K.; De la Torre, A.G.; Stöber, S.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2007) Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction. J. Am. Ceram. Soc. 90 (10), 3205–3212. https://doi.org/10.1111/j.1551-2916.2007.01870.x
Chen, Y.L.; Lin, Ch.J.; Ko, M.S.; Lai ,Y.Ch.; Chang, J.E. (2011) Characterization of mortars from belite-rich clinkers produced from inorganic waste. Cem. Concr. Comp. 33 (2), 261–266. https://doi.org/10.1016/j.cemconcomp.2010.10.012
Zivica, V. (2000) Properties of blended sulfoaluminate belite cement. Constr. Build. Mater. 14 (8), 433–437. https://doi.org/10.1016/S0950-0618(00)00050-7
Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 31 (12), 1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4
Strigac J.; Palou M. T.; Kristin J.; Majling J. (2000) Morphology and chemical composition of minerals inside the phase assemblage C-C2S-C4A3 S -C4AF-CS relevant to sulphoaluminate belite cements. Ceramics-Silikáty 44 (1), 26–34.
Martín-Sedeno, M.C.; Cuberos ,A.J.M.; De la Torre, A.G.; Álvarez Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40 (3), 359–369. https://doi.org/10.1016/j.cemconres.2009.11.003
Tišlova, R.; Kozłowska, A.; Kozłowski, R.; Hughes, D. (2009) Porosity and specific surface area of Roman cement pastes. Cem. Concr. Res. 39 (10), 950–956. https://doi.org/10.1016/j.cemconres.2009.06.020
Hughes, D.C.; Jaglin, D.; Kozłowski, R.; Mucha, D. (2009) Roman cements — Belite cements calcined at low temperature. Cem. Concr. Res. 39 (2), 77–89. https://doi.org/10.1016/j.cemconres.2008.11.010
Gosselin, C.; Verges-Belmin, V.; Royer, A.; Martinet, G. (2009) Natural cement and monumental restoration. Mater. Struct. 42 (6), 749–763. https://doi.org/10.1617/s11527-008-9421-7
Starinieri, V.; Hughes, D.C.; Gosselin, C.; Wilk, D.; Bayer, K. (2013) Pre-hydration as a technique for the retardation of Roman cement mortars. Cem. Concr. Res. 46, 1–13. https://doi.org/10.1016/j.cemconres.2013.01.004
Weber, J.; Gadermayr, N.; Kozłowski, R.; Mucha, D.; Hughes, D.; Jaglin, D.; Schwarz, W. (2007) Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Mater. Char. 58 (11–12), 1217–1228. https://doi.org/10.1016/j.matchar.2007.04.025
El-Didamony, H.; Khalil, Kh.A.; Ahmed, I.A.; Heikal, M. (2012) Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate (C3A3 CS) phases using non-traditional nano materials. Constr. Build. Mater. 35 77–83. https://doi.org/10.1016/j.conbuildmat.2012.02.064
Ozturk, A.; Suyadal, Y.; Oguz, H. (2000) The formation of belite phase by using phosphogypsum and oil shale. Cem. Concr. Res. 30 (6), 967–971. https://doi.org/10.1016/S0008-8846(00)00262-3
Staněk, T.; Sulovsky, P. (2015) Active low-energy belite cement. Cem. Concr. Res. 68, 203–210. https://doi.org/10.1016/j.cemconres.2014.11.004
Gies, A.; Knofel ,D. (1986) Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cem. Concr. Res. 16 (3), 411 -422. https://doi.org/10.1016/0008-8846(86)90117-1
Rodrigues, F.A. (2003) Low-temperature synthesis of cements from rice hull ash. Cem. Concr. Res. 33 (10), 1525–1529. https://doi.org/10.1016/S0008-8846(03)00104-2
Mazouzi, W.; Kacimi, L.; Cyr M.; Clastres P. (2014) Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cem. Concr. Comp. 53, 170–177. https://doi.org/10.1016/j.cemconcomp.2014.07.001
Maheswaran, S.; Kalaiselvam, S.; Saravana Karthikeyan, S.K.S.; Kokila, C.; Palani, G.S. (2016) β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem. Concr. Comp. 66, 57–65. https://doi.org/10.1016/j.cemconcomp.2015.11.008
Campillo, I.; Guerrero, A.; Dolado, J.S.; Porro, A.; Ibá-ez, J.A.;Go-i, S. (2007) Improvement of initial mechanical strength by nanoalumina in belite cements. Materials Letters 61 (8–9), 1889 1892. https://doi.org/10.1016/j.matlet.2006.07.150
Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (2000) Effect of the starting fly ash on the microstructure and mechanical properties of fly ash–belite cement mortars. Cem. Concr. Res. 30 (4), 553–559. https://doi.org/10.1016/S0008-8846(00)00198-8
Kacimi ,L.; Cyr, M.; Clastres, P. (2010) Synthesis of α′L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J. Hazard. Mater. 181 (1 -3), 593–601. https://doi.org/10.1016/j.jhazmat.2010.05.054 PMid:20541318
Singh, N.B. (2006) Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4). Progress in crystal growth and characterization of materials 52 (1–2) 77–83. https://doi.org/10.1016/j.pcrysgrow.2006.03.011
Link, T.; Bellmann, F.; Ludwig, H.M.; Ben Haha, M. (2015) Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate. Cem. Concr. Res. 67, 131–137. https://doi.org/10.1016/j.cemconres.2014.08.009
Guerrero ,A.; Go-i, S.; Macias, A. (2000) Durability of new fly ash–belite cement mortars in sulfated and chloride medium. Cem. Concr. Res. 30 (8), 1231–1238. https://doi.org/10.1016/S0008-8846(00)00313-6
Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (1999) Hydraulic activity and microstructural characterization of new fly ash–belite cements synthesized at different temperatures. J. Mater. Res. 14 (6), 2680–2687. https://doi.org/10.1557/JMR.1999.0359
Garbev, K.; Beuchle, G.; Schweike, U.; Merz, D.; Dregert, O.; Stemmermann P. (2014) Preparation of a Novel Cementitious Material from Hydrothermally Synthesized C-S-H Phases. J. Am. Ceram. Soc. 97 (7), 2298–2307. https://doi.org/10.1111/jace.12920
Gou, Z,.; Chang, J. (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J. Eur. Ceram. Soc. 24 (1), 93–99. https://doi.org/10.1016/S0955-2219(03)00320-0
Stephan, D.; Wilhelm, P. (2004) Synthesis of Pure Cementitious Phases by Sol-Gel Process as Precursor. Z. Anorg. Allg. Chem. 630 (10), 1477–1483. https://doi.org/10.1002/zaac.200400090
Gou, Z.; Chang, J.; Zhai, W.; Wang, J. (2005) Study on the Self Setting Property and the In Vitro Bioactivity of β-Ca2SiO4. J. Biomed. Mater. Res. B Appl. Biomater. 73 (2), 244–251. https://doi.org/10.1002/jbm.b.30203 PMid:15793821
Chrysafi, R.; Perraki, Th.; Kakali, G. (2007) Sol–gel preparation of 2CaO·SiO2. J. Eur. Ceram. Soc. 27 (2–3), 1707–1710. https://doi.org/10.1016/j.jeurceramsoc.2006.05.004
Nettleship, I.; Shull, J.L.; Kriven, W. M. (1993) Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. J. Eur. Ceram. Soc. 11 (4), 291–298. https://doi.org/10.1016/0955-2219(93)90028-P
Dovál, M.; Palou, M.; Kovár, V. (2006) Hydration and microstructure of binder compounds containing C2AS and C2S synthesized by sol-gel method. Ceramics-Silikáty 50 (2), 106–114.
Hong, S.H.; Young, J.F. (1999) Hydration kinetics and phase stability of dicalcium silicate synthesized by the Pechini process. J. Am. Ceram. Soc. 82 (7), 1681–1686. https://doi.org/10.1111/j.1151-2916.1999.tb01986.x
Zeng, L.; Li, Z. (2014) Solubility of dicalcium silicate in the NaOH–NaAl(OH)4–Na2CO3 solutions: Determination and prediction. Hydrometallurgy 147, 127–133. https://doi.org/10.1016/j.hydromet.2014.05.007
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.