Preparación de β-belita usando silicatos alcalinos líquidos
DOI:
https://doi.org/10.3989/mc.2017.10816Palabras clave:
Silicato bicálcico, Álcalis, Humo de sílice, Caliza, Difracción de rayos X (DRX)Resumen
El objetivo de este estudio ha sido la preparación de β-belita por reacción en estado sólido usando caliza, sílice amorfa y silicatos alcalinos líquidos. Las materias primas se mezclaron y posteriormente, se aglomeraron y calcinaron. Los productos se caracterizaron mediante difracción de rayos X y microscopía electrónica de barrido. Se determinó el contenido de cal libre en la β-belita. Se ha estudiado el efecto de la relación CaO/SiO2 (1.6–2.1), temperatura de combustión (800–1400 °C), utilización de diferentes materias primas y el tiempo de combustión sobre el contenido de cal libre en el producto. La β-belita más pura se preparó a partir de la mezcla de piedra caliza en polvo, humo de sílice y silicato de potasio líquido con relación CaO/SiO2 = 2 a temperaturas entre 1100 y 1300 °C durante más de 2 horas. La disminución de la relación CaO/SiO2 produjo rankinita y una temperatura de combustión más baja produjo wollastonita.
Descargas
Citas
Gartner, E. (2004) Industrially interesting approaches to "low CO2" cements. Cem. Concr. Res. 34 (9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021
Schneider, M.; Romer, M.; Tschudin ,M.; Bolio, H. (2011) Sustainable cement production—present and future. Cem. Concr. Res. 41 (7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
Chatterjee, A.K. (1996) High belite cements—Present status and future technological options: Part I. Cem. Concr. Res. 26 (8), 1213 -1225. https://doi.org/10.1016/0008-8846(96)00099-3
Bensted, J. (1978) Gamma-dicalcium silicate and its hydraulicity. Cem. Concr. Res. 8 (1), 73–76. https://doi.org/10.1016/0008-8846(78)90059-5
Kriskova, L.; Pontikes, Y.; Zhang, F.; Cizer, Ö.; Jones, P.T.; Van Balen, K.; Blanpain, B. (2014) Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem. Concr. Res. 55, 59–68. https://doi.org/10.1016/j.cemconres.2013.10.004
Rodrigues, F.A. (2003) Synthesis of chemically and structurally modified dicalcium silicate. Cem. Concr. Res. 33 (6), 823–827. https://doi.org/10.1016/S0008-8846(02)01065-7
Kurdowski, W.; Duszak, S.; Trybalska, B. (1997) Belite produced by means of low-temperature synthesis. Cem. Concr. Res. 27 (1), 51–62. https://doi.org/10.1016/S0008-8846(96)00198-6
Kacimi, L.; Simon-Masseron ,A.; Salem, S.; Ghomari, A.; Derriche, Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 (7), 559–565. https://doi.org/10.1016/j.cemconres.2009.02.004
Pimraksa, K.; Hanjitsuwan, S.; Chindaprasirt, P. (2009) Synthesis of belite cement from lignite fly ash. Ceram. Int. 35 (6), 2415–2425. https://doi.org/10.1016/j.ceramint.2009.02.006
Morsli, K.; De la Torre, A.G.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2009) Preparation and characterization of alkali-activated white belite cements. Mater. Construcc. 59 (294), 19–29.
Morsli, K.; De la Torre, A.G.; Stöber, S.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2007) Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction. J. Am. Ceram. Soc. 90 (10), 3205–3212. https://doi.org/10.1111/j.1551-2916.2007.01870.x
Chen, Y.L.; Lin, Ch.J.; Ko, M.S.; Lai ,Y.Ch.; Chang, J.E. (2011) Characterization of mortars from belite-rich clinkers produced from inorganic waste. Cem. Concr. Comp. 33 (2), 261–266. https://doi.org/10.1016/j.cemconcomp.2010.10.012
Zivica, V. (2000) Properties of blended sulfoaluminate belite cement. Constr. Build. Mater. 14 (8), 433–437. https://doi.org/10.1016/S0950-0618(00)00050-7
Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 31 (12), 1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4
Strigac J.; Palou M. T.; Kristin J.; Majling J. (2000) Morphology and chemical composition of minerals inside the phase assemblage C-C2S-C4A3 S -C4AF-CS relevant to sulphoaluminate belite cements. Ceramics-Silikáty 44 (1), 26–34.
Martín-Sedeno, M.C.; Cuberos ,A.J.M.; De la Torre, A.G.; Álvarez Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40 (3), 359–369. https://doi.org/10.1016/j.cemconres.2009.11.003
Tišlova, R.; Kozłowska, A.; Kozłowski, R.; Hughes, D. (2009) Porosity and specific surface area of Roman cement pastes. Cem. Concr. Res. 39 (10), 950–956. https://doi.org/10.1016/j.cemconres.2009.06.020
Hughes, D.C.; Jaglin, D.; Kozłowski, R.; Mucha, D. (2009) Roman cements — Belite cements calcined at low temperature. Cem. Concr. Res. 39 (2), 77–89. https://doi.org/10.1016/j.cemconres.2008.11.010
Gosselin, C.; Verges-Belmin, V.; Royer, A.; Martinet, G. (2009) Natural cement and monumental restoration. Mater. Struct. 42 (6), 749–763. https://doi.org/10.1617/s11527-008-9421-7
Starinieri, V.; Hughes, D.C.; Gosselin, C.; Wilk, D.; Bayer, K. (2013) Pre-hydration as a technique for the retardation of Roman cement mortars. Cem. Concr. Res. 46, 1–13. https://doi.org/10.1016/j.cemconres.2013.01.004
Weber, J.; Gadermayr, N.; Kozłowski, R.; Mucha, D.; Hughes, D.; Jaglin, D.; Schwarz, W. (2007) Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Mater. Char. 58 (11–12), 1217–1228. https://doi.org/10.1016/j.matchar.2007.04.025
El-Didamony, H.; Khalil, Kh.A.; Ahmed, I.A.; Heikal, M. (2012) Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate (C3A3 CS) phases using non-traditional nano materials. Constr. Build. Mater. 35 77–83. https://doi.org/10.1016/j.conbuildmat.2012.02.064
Ozturk, A.; Suyadal, Y.; Oguz, H. (2000) The formation of belite phase by using phosphogypsum and oil shale. Cem. Concr. Res. 30 (6), 967–971. https://doi.org/10.1016/S0008-8846(00)00262-3
Staněk, T.; Sulovsky, P. (2015) Active low-energy belite cement. Cem. Concr. Res. 68, 203–210. https://doi.org/10.1016/j.cemconres.2014.11.004
Gies, A.; Knofel ,D. (1986) Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cem. Concr. Res. 16 (3), 411 -422. https://doi.org/10.1016/0008-8846(86)90117-1
Rodrigues, F.A. (2003) Low-temperature synthesis of cements from rice hull ash. Cem. Concr. Res. 33 (10), 1525–1529. https://doi.org/10.1016/S0008-8846(03)00104-2
Mazouzi, W.; Kacimi, L.; Cyr M.; Clastres P. (2014) Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cem. Concr. Comp. 53, 170–177. https://doi.org/10.1016/j.cemconcomp.2014.07.001
Maheswaran, S.; Kalaiselvam, S.; Saravana Karthikeyan, S.K.S.; Kokila, C.; Palani, G.S. (2016) β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem. Concr. Comp. 66, 57–65. https://doi.org/10.1016/j.cemconcomp.2015.11.008
Campillo, I.; Guerrero, A.; Dolado, J.S.; Porro, A.; Ibá-ez, J.A.;Go-i, S. (2007) Improvement of initial mechanical strength by nanoalumina in belite cements. Materials Letters 61 (8–9), 1889 1892. https://doi.org/10.1016/j.matlet.2006.07.150
Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (2000) Effect of the starting fly ash on the microstructure and mechanical properties of fly ash–belite cement mortars. Cem. Concr. Res. 30 (4), 553–559. https://doi.org/10.1016/S0008-8846(00)00198-8
Kacimi ,L.; Cyr, M.; Clastres, P. (2010) Synthesis of α′L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J. Hazard. Mater. 181 (1 -3), 593–601. https://doi.org/10.1016/j.jhazmat.2010.05.054 PMid:20541318
Singh, N.B. (2006) Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4). Progress in crystal growth and characterization of materials 52 (1–2) 77–83. https://doi.org/10.1016/j.pcrysgrow.2006.03.011
Link, T.; Bellmann, F.; Ludwig, H.M.; Ben Haha, M. (2015) Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate. Cem. Concr. Res. 67, 131–137. https://doi.org/10.1016/j.cemconres.2014.08.009
Guerrero ,A.; Go-i, S.; Macias, A. (2000) Durability of new fly ash–belite cement mortars in sulfated and chloride medium. Cem. Concr. Res. 30 (8), 1231–1238. https://doi.org/10.1016/S0008-8846(00)00313-6
Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (1999) Hydraulic activity and microstructural characterization of new fly ash–belite cements synthesized at different temperatures. J. Mater. Res. 14 (6), 2680–2687. https://doi.org/10.1557/JMR.1999.0359
Garbev, K.; Beuchle, G.; Schweike, U.; Merz, D.; Dregert, O.; Stemmermann P. (2014) Preparation of a Novel Cementitious Material from Hydrothermally Synthesized C-S-H Phases. J. Am. Ceram. Soc. 97 (7), 2298–2307. https://doi.org/10.1111/jace.12920
Gou, Z,.; Chang, J. (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J. Eur. Ceram. Soc. 24 (1), 93–99. https://doi.org/10.1016/S0955-2219(03)00320-0
Stephan, D.; Wilhelm, P. (2004) Synthesis of Pure Cementitious Phases by Sol-Gel Process as Precursor. Z. Anorg. Allg. Chem. 630 (10), 1477–1483. https://doi.org/10.1002/zaac.200400090
Gou, Z.; Chang, J.; Zhai, W.; Wang, J. (2005) Study on the Self Setting Property and the In Vitro Bioactivity of β-Ca2SiO4. J. Biomed. Mater. Res. B Appl. Biomater. 73 (2), 244–251. https://doi.org/10.1002/jbm.b.30203 PMid:15793821
Chrysafi, R.; Perraki, Th.; Kakali, G. (2007) Sol–gel preparation of 2CaO·SiO2. J. Eur. Ceram. Soc. 27 (2–3), 1707–1710. https://doi.org/10.1016/j.jeurceramsoc.2006.05.004
Nettleship, I.; Shull, J.L.; Kriven, W. M. (1993) Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. J. Eur. Ceram. Soc. 11 (4), 291–298. https://doi.org/10.1016/0955-2219(93)90028-P
Dovál, M.; Palou, M.; Kovár, V. (2006) Hydration and microstructure of binder compounds containing C2AS and C2S synthesized by sol-gel method. Ceramics-Silikáty 50 (2), 106–114.
Hong, S.H.; Young, J.F. (1999) Hydration kinetics and phase stability of dicalcium silicate synthesized by the Pechini process. J. Am. Ceram. Soc. 82 (7), 1681–1686. https://doi.org/10.1111/j.1151-2916.1999.tb01986.x
Zeng, L.; Li, Z. (2014) Solubility of dicalcium silicate in the NaOH–NaAl(OH)4–Na2CO3 solutions: Determination and prediction. Hydrometallurgy 147, 127–133. https://doi.org/10.1016/j.hydromet.2014.05.007
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.