High strength oil palm shell concrete beams reinforced with steel fibres
DOI:
https://doi.org/10.3989/mc.2017.11616Keywords:
Aggregate, concrete, Fibre-reinforcement, Flexural behaviour, Mechanical propertiesAbstract
The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC) has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC). The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.
Downloads
References
Kivrak, S.; Tuncan, M.; Onur, M.I.; Arslan, G.; Arioz, O. (2006). An economic perspective opf advantages of using lightweight concrete in construction, Proceeding of 31st Conference on Our World In Concrete & Structures, Singapore.
Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. (2013). Enhancement of mechanical properties in polypropylene and nylon fibre reinforced oil palm shell concrete. Mater. Des. 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070
Campione, G.; Miraglia, N.; Papia, M. (2001). Mechanical properties of steel fibre reinforced lightweight concrete with pumice stone or expanded clay aggregates, Mater. Struct. 34[4], 201-210. https://doi.org/10.1007/BF02480589
Short, A.; Kinniburgh, W. (1978). Lightweight concrete, C.R. Books 1978.
Wu, C.; Oehlers, D.J.; Rebentrost, M.; Leach, J.; Whittaker, A.S. (2009). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Eng. Struct. 31[9], 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
Alengaram, U.J.; Mahmud, H.; Jumaat, M.Z. (2011). Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Mater. Des. 32[4], 2143-2148. https://doi.org/10.1016/j.matdes.2010.11.035
Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, A.Y.T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 37[12], 1361-1367. https://doi.org/10.1016/S0360-1323(01)00109-3
Klein, N.S.; Fuente, A.D.L.; Aguado, A.; MasÛ, D. (2011). Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation. Mater. Construcc. 61[302], 239-256. https://doi.org/10.3989/mc.2011.55509
Alengaram, U.J.; Muhit, B.A.A.; Jumaat, M.Z. (2013). Utilization of oil palm kernel shell as lightweight aggregate in concrete - A review. Construct. Build. Mat. 38, 161-172. https://doi.org/10.1016/j.conbuildmat.2012.08.026
Mannan, M.A.; Ganapathy, C. (2001). Long-term strengths of concrete with oil palm shell as coarse aggregate. Cem. Concr. Res. 31[9], 1319-1321. https://doi.org/10.1016/S0008-8846(01)00584-1
Teo, D.C.L.; Mannan, M.A.; Kurian, V.J. (2006). Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). J. Adv. Concr. Technol. 4[3], 459-468. https://doi.org/10.3151/jact.4.459
Alengaram, U.J.; Jumaat, M.Z.; Mahmud, H. (2008). Ductility behaviour of reinforced palm kernel shell concrete beams. Eur. J. Sci. Res. 23[3], 406-420.
Gao, J.; Sun, W.; Morino, K. (1997). Mechanical properties of steel fibre-reinforced, high-strength, lightweight concrete. Cem. Concr. Comp. 19, 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1
Bian, H.; Hannawi, K.; Takarli, M.; Molez, L.; Prince, W. (2016). Effects of thermal damage on physical properties and cracking behaviour of ultrahigh-performance fibrereinforced concrete. J. Mater. Sci. 51[22], 10066-10076. https://doi.org/10.1007/s10853-016-0233-9
Tonoli, G.H.D.; Pizzol, V.D.; Urrea, G.; Santos, S.F.; Mendes, L.M.; Santos, V.; John, V.M.; FrÌas, M.; Savastano, H. (2016). Rationalizing the impact of aging on fibre-matrix interface and stability of cement-based composites submitted to carbonation at early ages. J. Mater. Sci. 51[17], 7929-7943. https://doi.org/10.1007/s10853-016-0060-z
Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. (2016). High-performance fibre-reinforced concrete: a review. J. Mater. Sci. 51[14], 6517-6551. https://doi.org/10.1007/s10853-016-9917-4
Savastano Jr, H.; Santos, S.F.; Tonoli, G.H.D.; Mejia, J.E.B.; Fiorelli, J. (2015). Non-conventional cement-based composites reinforced with vegetable fibres: A review of strategies to improve durability. Mater. Construcc. 65[317], e041. https://doi.org/10.3989/mc.2015.05514
González-GarcÌa, M.N.; Fernández-Cánovas, M.; Pii-ero, J.¡.; Cobo, A. (2016). Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study. Mater. Construcc. 66[324], e103. https://doi.org/10.3989/mc.2016.08315
Buratti, N.; Mazzotti, C.; Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construct. Build. Mat. 25, 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022
Ng, T.S.; Foster, S.J.; Htet, M.L.; Htut, T.N.S. (2013). Mixed mode fracture behaviour of steel fibre reinforced concrete. Mater. Struct. 47[1 2], 67-76.
Altun, F.; Akta_, B. (2013). Investigation of reinforced concrete beams behaviour of steel fibre added lightweight concrete. Construct. Build. Mat. 38, 575 581. https://doi.org/10.1016/j.conbuildmat.2012.09.022
Shafigh, P.; Mahmud, H.; Jumaat, M.Z. (2011). Effect of steel fibre on the mechanical properties of oil palm shell lightweight concrete. Mater. Des. 32[7], 3926-3932. https://doi.org/10.1016/j.matdes.2011.02.055
Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Bu, C.H. (2014). Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construct. Build. Mat. 50, 499-507. https://doi.org/10.1016/j.conbuildmat.2013.10.016
Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. (2016). The effect of aspect ratio and volume fraction on mechanical properties of steel fibre-reinforced oil palm shell concrete. J. Civ. Eng. Manag. 22[2], 168-177. https://doi.org/10.3846/13923730.2014.897970
Gribniak, V.; Kaklauskas, G.; Hung Kwan, A.K.; Bacinskas, D.; Ulbinas, D. (2012). Deriving stress strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement. Eng. Struct. 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032
Qian, C.; Indubhushan, P. (1999). Properties of highstrength steel fibre-reinforced concrete beams in bending. Cem. Concr. Comp. 21[1], 73-81. https://doi.org/10.1016/S0958-9465(98)00040-7
Altun, F.; Haktanir, T.; Ari, K. (2007). Effects of steel fibre addition on mechanical properties of concrete and RC beams. Construct. Build. Mat. 21[3], 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006
Wang, H.; Belarbi, A. (2011). Ductility characteristics of fibre-reinforced-concrete beams reinforced with FRP rebars. Construct. Build. Mat. 25[5], 2391-2401. https://doi.org/10.1016/j.conbuildmat.2010.11.040
Meda, A.; Minelli, F.; Plizzari, G.A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. Compos. Part B-Eng. 43[8], 2930-2937. https://doi.org/10.1016/j.compositesb.2012.06.003
Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N. (2008). Stress-strain behavior of steel fiber-reinforced concrete in compression. J. Mater. Civil. Eng. 20[3], 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
Hassanpour, M.; Shafigh, P.; Mahmud, H. (2012). Lightweight aggregate concrete fiber reinforcement A review. Construct. Build. Mat. 37, 452-461. https://doi.org/10.1016/j.conbuildmat.2012.07.071
Domagala, L. (2011). Modification of properties of structural lightweight concrete with steel fibres. J. Civ. Eng. Manag. 17[1], 36-44. https://doi.org/10.3846/13923730.2011.553923
Singh, S.; Shukla, A.; Brown, R. (2004). Pullout behaviour of polypropylene fibres from cementitious matrix. Cem. Concr. Res. 34[10], 1919-1925. https://doi.org/10.1016/j.cemconres.2004.02.014
Blanco, A.; Pujadas, P.;Fuente, A.D.L.; Cavalaro, S.H.P.; Aguado, A. (2016). Influence of the type of fiber on the structural response and design of FRC slabs. J. Struct. Eng. 142[9],. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001515
Chen, B.; Liu, J. (2005). Contribution of hybrid fibres on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 35[5], 913-917. https://doi.org/10.1016/j.cemconres.2004.07.035
Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Khaw, K.R. (2016). Torsional and cracking characteristics of steel fibre-reinforced oil palm shell lightweight concrete. J. Compos. Mater. 5[1], 115-128. https://doi.org/10.1177/0021998315571431
Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Khaw, K.R. (2015). Torsional behaviour of steel fibre-reinforced oil palm shell concrete beams. Mater. Des. 87, 854-862. https://doi.org/10.1016/j.matdes.2015.08.078
Jaeger, G.L.; Tadros, G.; Mufti, A.A. (1997). The concept of the overall performance factor in rectangularsection reinforced concrete beams, Proceeding of 3rd International Symposium on Non-metallic (FRP) reinforcement for concrete structures, Sapporo, Japan, 1997, pp. 551-558.
Ashour, S.A. (2000). Effect of compressive strength and tensile reinforcement ratio on flexural behaviour of highstrength concrete beams. Eng. Struct. 22[5], 413-423. https://doi.org/10.1016/S0141-0296(98)00135-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.