Vigas de hormigón de alta resistencia con palma de aceite reforzados con fibras de acero

Autores/as

DOI:

https://doi.org/10.3989/mc.2017.11616

Palabras clave:

Árido, Hormigón, Refuerzo de fibras, Resistencia a la flexión, Propiedades mecánicas

Resumen


La utilización de cáscara ligera de palma de aceite para producir materiales duraderos y de alta resistencia ha llevado a muchos investigadores a su comercialización como hormigón estructural. Sin embargo, la baja resistencia a la tracción del hormigón de cáscara de palma de aceite (OPSC) ha obstaculizado su desarrollo. Este estudio tiene como objetivo mejorar las propiedades mecánicas y los comportamientos de flexión de OPSC mediante la adición de fibras de acero de hasta un 3% en volumen, para producir hormigón armado de fibra de palma de aceite (OPSFRC). Los resultados experimentales mostraron que las fibras de acero mejoraron significativamente las propiedades mecánicas de OPSFRC. En la mezcla OPSFRC reforzada con fibras de acero al 3% se obtuvieron las mayores resistencias a la compresión, resistencia a la tracción ya la flexión de 55, 11,0 y 18,5 MPa, respectivamente. Además, el ensayo de vigas flexibles en haces OPSFRC con fibras de acero al 3% mostró que el refuerzo de fibra de acero hasta 3% produjo incrementos notables en la capacidad momentánea y resistencia a la fisuración de los haces OPSFRC, pero acompañado de una reducción de la ductilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kivrak, S.; Tuncan, M.; Onur, M.I.; Arslan, G.; Arioz, O. (2006). An economic perspective opf advantages of using lightweight concrete in construction, Proceeding of 31st Conference on Our World In Concrete & Structures, Singapore.

Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. (2013). Enhancement of mechanical properties in polypropylene and nylon fibre reinforced oil palm shell concrete. Mater. Des. 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070

Campione, G.; Miraglia, N.; Papia, M. (2001). Mechanical properties of steel fibre reinforced lightweight concrete with pumice stone or expanded clay aggregates, Mater. Struct. 34[4], 201-210. https://doi.org/10.1007/BF02480589

Short, A.; Kinniburgh, W. (1978). Lightweight concrete, C.R. Books 1978.

Wu, C.; Oehlers, D.J.; Rebentrost, M.; Leach, J.; Whittaker, A.S. (2009). Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Eng. Struct. 31[9], 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020

Alengaram, U.J.; Mahmud, H.; Jumaat, M.Z. (2011). Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Mater. Des. 32[4], 2143-2148. https://doi.org/10.1016/j.matdes.2010.11.035

Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, A.Y.T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 37[12], 1361-1367. https://doi.org/10.1016/S0360-1323(01)00109-3

Klein, N.S.; Fuente, A.D.L.; Aguado, A.; MasÛ, D. (2011). Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation. Mater. Construcc. 61[302], 239-256. https://doi.org/10.3989/mc.2011.55509

Alengaram, U.J.; Muhit, B.A.A.; Jumaat, M.Z. (2013). Utilization of oil palm kernel shell as lightweight aggregate in concrete - A review. Construct. Build. Mat. 38, 161-172. https://doi.org/10.1016/j.conbuildmat.2012.08.026

Mannan, M.A.; Ganapathy, C. (2001). Long-term strengths of concrete with oil palm shell as coarse aggregate. Cem. Concr. Res. 31[9], 1319-1321. https://doi.org/10.1016/S0008-8846(01)00584-1

Teo, D.C.L.; Mannan, M.A.; Kurian, V.J. (2006). Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). J. Adv. Concr. Technol. 4[3], 459-468. https://doi.org/10.3151/jact.4.459

Alengaram, U.J.; Jumaat, M.Z.; Mahmud, H. (2008). Ductility behaviour of reinforced palm kernel shell concrete beams. Eur. J. Sci. Res. 23[3], 406-420.

Gao, J.; Sun, W.; Morino, K. (1997). Mechanical properties of steel fibre-reinforced, high-strength, lightweight concrete. Cem. Concr. Comp. 19, 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1

Bian, H.; Hannawi, K.; Takarli, M.; Molez, L.; Prince, W. (2016). Effects of thermal damage on physical properties and cracking behaviour of ultrahigh-performance fibrereinforced concrete. J. Mater. Sci. 51[22], 10066-10076. https://doi.org/10.1007/s10853-016-0233-9

Tonoli, G.H.D.; Pizzol, V.D.; Urrea, G.; Santos, S.F.; Mendes, L.M.; Santos, V.; John, V.M.; FrÌas, M.; Savastano, H. (2016). Rationalizing the impact of aging on fibre-matrix interface and stability of cement-based composites submitted to carbonation at early ages. J. Mater. Sci. 51[17], 7929-7943. https://doi.org/10.1007/s10853-016-0060-z

Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. (2016). High-performance fibre-reinforced concrete: a review. J. Mater. Sci. 51[14], 6517-6551. https://doi.org/10.1007/s10853-016-9917-4

Savastano Jr, H.; Santos, S.F.; Tonoli, G.H.D.; Mejia, J.E.B.; Fiorelli, J. (2015). Non-conventional cement-based composites reinforced with vegetable fibres: A review of strategies to improve durability. Mater. Construcc. 65[317], e041. https://doi.org/10.3989/mc.2015.05514

González-GarcÌa, M.N.; Fernández-Cánovas, M.; Pii-ero, J.¡.; Cobo, A. (2016). Compressive strength behaviour of low- and medium-strength concrete specimens confined with carbon fibres in defective implementation conditions: an experimental study. Mater. Construcc. 66[324], e103. https://doi.org/10.3989/mc.2016.08315

Buratti, N.; Mazzotti, C.; Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construct. Build. Mat. 25, 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022

Ng, T.S.; Foster, S.J.; Htet, M.L.; Htut, T.N.S. (2013). Mixed mode fracture behaviour of steel fibre reinforced concrete. Mater. Struct. 47[1 2], 67-76.

Altun, F.; Akta_, B. (2013). Investigation of reinforced concrete beams behaviour of steel fibre added lightweight concrete. Construct. Build. Mat. 38, 575 581. https://doi.org/10.1016/j.conbuildmat.2012.09.022

Shafigh, P.; Mahmud, H.; Jumaat, M.Z. (2011). Effect of steel fibre on the mechanical properties of oil palm shell lightweight concrete. Mater. Des. 32[7], 3926-3932. https://doi.org/10.1016/j.matdes.2011.02.055

Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Bu, C.H. (2014). Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construct. Build. Mat. 50, 499-507. https://doi.org/10.1016/j.conbuildmat.2013.10.016

Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. (2016). The effect of aspect ratio and volume fraction on mechanical properties of steel fibre-reinforced oil palm shell concrete. J. Civ. Eng. Manag. 22[2], 168-177. https://doi.org/10.3846/13923730.2014.897970

Gribniak, V.; Kaklauskas, G.; Hung Kwan, A.K.; Bacinskas, D.; Ulbinas, D. (2012). Deriving stress strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement. Eng. Struct. 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032

Qian, C.; Indubhushan, P. (1999). Properties of highstrength steel fibre-reinforced concrete beams in bending. Cem. Concr. Comp. 21[1], 73-81. https://doi.org/10.1016/S0958-9465(98)00040-7

Altun, F.; Haktanir, T.; Ari, K. (2007). Effects of steel fibre addition on mechanical properties of concrete and RC beams. Construct. Build. Mat. 21[3], 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006

Wang, H.; Belarbi, A. (2011). Ductility characteristics of fibre-reinforced-concrete beams reinforced with FRP rebars. Construct. Build. Mat. 25[5], 2391-2401. https://doi.org/10.1016/j.conbuildmat.2010.11.040

Meda, A.; Minelli, F.; Plizzari, G.A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. Compos. Part B-Eng. 43[8], 2930-2937. https://doi.org/10.1016/j.compositesb.2012.06.003

Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N. (2008). Stress-strain behavior of steel fiber-reinforced concrete in compression. J. Mater. Civil. Eng. 20[3], 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)

Hassanpour, M.; Shafigh, P.; Mahmud, H. (2012). Lightweight aggregate concrete fiber reinforcement A review. Construct. Build. Mat. 37, 452-461. https://doi.org/10.1016/j.conbuildmat.2012.07.071

Domagala, L. (2011). Modification of properties of structural lightweight concrete with steel fibres. J. Civ. Eng. Manag. 17[1], 36-44. https://doi.org/10.3846/13923730.2011.553923

Singh, S.; Shukla, A.; Brown, R. (2004). Pullout behaviour of polypropylene fibres from cementitious matrix. Cem. Concr. Res. 34[10], 1919-1925. https://doi.org/10.1016/j.cemconres.2004.02.014

Blanco, A.; Pujadas, P.;Fuente, A.D.L.; Cavalaro, S.H.P.; Aguado, A. (2016). Influence of the type of fiber on the structural response and design of FRC slabs. J. Struct. Eng. 142[9],. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001515

Chen, B.; Liu, J. (2005). Contribution of hybrid fibres on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 35[5], 913-917. https://doi.org/10.1016/j.cemconres.2004.07.035

Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Khaw, K.R. (2016). Torsional and cracking characteristics of steel fibre-reinforced oil palm shell lightweight concrete. J. Compos. Mater. 5[1], 115-128. https://doi.org/10.1177/0021998315571431

Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z.; Khaw, K.R. (2015). Torsional behaviour of steel fibre-reinforced oil palm shell concrete beams. Mater. Des. 87, 854-862. https://doi.org/10.1016/j.matdes.2015.08.078

Jaeger, G.L.; Tadros, G.; Mufti, A.A. (1997). The concept of the overall performance factor in rectangularsection reinforced concrete beams, Proceeding of 3rd International Symposium on Non-metallic (FRP) reinforcement for concrete structures, Sapporo, Japan, 1997, pp. 551-558.

Ashour, S.A. (2000). Effect of compressive strength and tensile reinforcement ratio on flexural behaviour of highstrength concrete beams. Eng. Struct. 22[5], 413-423. https://doi.org/10.1016/S0141-0296(98)00135-7

Publicado

2017-12-30

Cómo citar

Poh-Yap, S., Johnson-Alengaram, U., Hung-Mo, K., & Zamin-Jumaat, M. (2017). Vigas de hormigón de alta resistencia con palma de aceite reforzados con fibras de acero. Materiales De Construcción, 67(328), e142. https://doi.org/10.3989/mc.2017.11616

Número

Sección

Artículos