Disoluciones de silicato sódico procedentes del tratamiento de residuos vítreos. Estudio estadístico

Autores/as

  • M. Torres-Carrasco Eduardo Torroja Institute for Construction Sciences (IETcc-CSIC) (Madrid, Spain)
  • J. G. Palomo School of Building Engineering (EUATM-UPM) (Madrid, Spain)
  • F. Puertas Eduardo Torroja Institute for Construction Sciences (IETcc-CSIC) (Madrid, Spain)

DOI:

https://doi.org/10.3989/mc.2014.05213

Palabras clave:

Residuos vítreos, Cementos alcalinos, Solubilidad, Silicatos sódico hidratados (waterglass), Activadores alcalinos

Resumen


Se ha estudiado el proceso de solubilidad de cuatro diferentes residuos vítreos (con distintas granulometrías, <45 µm y >125 µm) en disoluciones alcalinas de NaOH y NaOH/Na₂CO₃ y agua como medio de referencia y bajo distintas condiciones de solubilidad (a temperatura ambiente, a 80°C y con un proceso mecano-químico). Se han establecido las condiciones óptimas de solubilidad y generación de disoluciones de silicato sódico, y estas son: menor tamaño de partícula del residuo vítreo (inferior a 45 µm), con la disolución de NaOH/Na₂CO₃ y tratamiento térmico a 80°C durante 6 horas de agitación. El análisis estadístico realizado a los resultados obtenidos da importancia a las variables estudiadas y a las interacciones de las mismas. A través de ²⁹Si RMN MAS se ha confirmado la formación, tras los procesos de disolución, de un silicato monomérico, apto para su utilización como activador en la preparación de cementos y hormigones alcalinos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Chesner, W.H.; Collins, R.J.; MacKay, M.H. (1997) User Guidelines for Waste and By-product Materials in Pavement Construction, US Department of Transportation, Federal Highway Administration, Publication. FHWA-RD-97-148.

2. Caijun, S.; Keren, Z. (2007) A review on the use of waste glasses in the production of cement and concrete. Resources Conservation and Recycling, 52, 234–247. http://dx.doi.org/10.1016/j.resconrec.2007.01.013

3. Guohua, C.; Harry, L.; King, L.Y.; Po, L.Y.; Adolf, W.; Thomas, T.M.; Ka, K.C. (2002) Glass recycling in cement production-an innovative approach. Waste Management, 22, 747–753. http://dx.doi.org/10.1016/S0956-053X(02)00047-8

4. Ecovidrio 2012. http://www.ecovidrio.es/.

5. Shi, C.; Wu, Y.; Riefler, C.; Wang, H. (2005) Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 35 [5], 987–993. http://dx.doi.org/10.1016/j.cemconres.2004.05.015

6. Andreola, F.; Barbieri, L.; Karamanova, E.; Lancellotti, I.; Pelino, M. (2008) Recycling of CRT panel glass as fluxing agent in the porcelain stoneware tile production. Ceramics International, 34, 1289–1295. http://dx.doi.org/10.1016/j.ceramint.2007.03.013. http://dx.doi.org/10.1016/j.ceramint.2007.03.013

7. Luz, A.P.; Riberio, S. (2007) Use of glass waste as a raw material in porcelain stoneware tile mixtures. Ceramics International, 33, 761–765. http://dx.doi.org/10.1016/j.ceramint.2006.01.001

8. Chester, W.H. (1992) Waste glass and sludge for use in asphalt pavement. Utilization of Waste Materials in Civil Engineering Construction, 296–307.

9. Gorokhovski, A.V.; Escalante-García, J.I.; Gashnikova Yu.; Nikulina, L.P.; Artemenko, S.E. (2005) Composite materials basse on wastes of flan glass processing. Waste Management, 25, 733–736. http://dx.doi.org/10.1016/j.wasman.2004.11.007. http://dx.doi.org/10.1016/j.wasman.2004.11.007

10. Torres, J.J.; Palacios, M.; Hellouin, M.; Puertas, F. (2009) Alkaline chemical activation of urban glass to produce cementitiuous materials. 1ª Conferencia sobre Reciclado de Materiales y Eco-Energía (RECIMAT 09), 110–114.

11. Torres-Carrasco, M.; Puertas, F.; Blanco-Varela, M.T. (2012) Preparación de cementos alcalinos a partir de residuos vítreos. Solubilidad de residuos vítreos en medios fuertemente básicos. XII Congreso Nacional de Materiales (Alicante).

12. Puertas, F. (1995) Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro. Mater. Construcc. 45 [239], 53–66. http://dx.doi.org/10.3989/mc.1995.v45.i239.553

13. Shi, C.; Kryvenko, P.V.; Roy Della. (2006) Alkali-activated cements and concretes. Ed. Taylor & Francis.

14. Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M.T. (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34, 139–148. http://dx.doi.org/10.1016/S0008-8846(03)00254-0

15. Puertas, F.; Martínez-Ramirez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30, 1625–1632. http://dx.doi.org/10.1016/S0008-8846(00)00298-2

16. Puertas, F.; Fernández-Jiménez, A. (2003) Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes. Cem. Concr. Comp. 25 [3], 287–292. http://dx.doi.org/10.1016/S0958-9465(02)00059-8

17. Sánchez, R.; Palacios, M.; Puertas, F. (2011) Characteristics and properties of oil-well cements additioned with blast furnace slag. Mater. Construcc. 61 [302], 185–211. http://dx.doi.org/10.3989/mc.2010.54110

18. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as silica source in fly ash and ground blast furnace slag cementitious alkali activated systems. Mater. Construcc, 63 [311], 361–375. http://dx.doi.org/10.3989/mc.2013.04712

19. Van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Bride, D.G. (2010) Chemical research and climate changes as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor. 1, 145–155. http://dx.doi.org/10.1007/s12649-010-9015-9

20. Van Deventer, J.S.J.; Provis, J.L.; Duxon, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89–104. http://dx.doi.org/10.1016/j.mineng.2011.09.009

21. Fernández-Jiménez, A.; Puertas, F.; Palomo, J.G. (1999) Alkali-activated slag mortars: mechanical strength behavior. Cem. Concr. Res. 29, 593–604. http://dx.doi.org/10.1016/S0008-8846(99)00154-4

22. Larosa-Thomson, J.; Gill, P.; Scheetz, B.E.; Silsbee, M.R. (1997) Sodium silicate applications for cement and concrete. Proc. 10th Int. Congr. On the Chemistry of Cement, Gothenburg, 3.3.

23. Ralph K. Iler. (1979) The chemistry of Silica. Solubility, polymerization, colloid and surface properties and biochemistry. John Wiley & Sons, Inc. ISBN 0-471-02404-X.

24. Fernández Navarro, J.M. (2003) El vidrio. Consejo Superior de Investigaciones Científicas. Sociedad Espa-ola de Cerámica y Vidrio. Madrid.

25. T.M. El-Shamy.; Panteno, C.G. (1977) Descomposition of silicate glasses in alkaline solutions. Nature, 266, 704–706. http://dx.doi.org/10.1038/266704a0

26. El-Shamy, T.M.; Lewis, J.; Douglas, R.W. (1972) The dependence on the pH of the descomposition of glasses by aqueous solutions. Glass Technology, 13, 81–87.

27. Paul, A. (1977) Chemical durability of glasses; a thermodynamic approach. Journal of materials science, 12, 2246–2268. http://dx.doi.org/10.1007/BF00552247

28. K. Goto, J. (1955) States of silica in aqueous solution II. Solubility of amorophous silica. Chem. Soc. Jap. Pure Chem Sect, 76, 1364–1366.

29. Stanworth, J.E. (1950) Physikalische Eigenschaften und Struktur von Gläsern. Glastech 23, 297–304.

30. Engelhardth, G.; Michel, D. (1987) High Resolution Solid State NMR of Silicates and Zeolites. Wiley, Chichester, UK.

31. Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J. (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR" Survey, Microporous and Mesoporous Materials 109 [1–3], 525–534. http://dx.doi.org/10.1016/j.micromeso.2007.05.062

32. Palomo, A.; Fernández-Jiménez, A.; Criado, M. (2004) Geopolímeros: una única base química y diferentes microestructuras. Mater. Construcc. 54, 275. http://dx.doi.org/10.3989/mc.2004.v54.i275.249

33. Ruiz-Santaquiteria, C.; Torres-Carrasco, M.; Alonso, M.M.; Puertas, F. (2013) Valorización de residuos vítreos en la elaboración de morteros alcalinos. Workshop on Environmental Impact of Buildings Construction, Universidad Politécnica de Madrid.

Publicado

2014-03-30

Cómo citar

Torres-Carrasco, M., Palomo, J. G., & Puertas, F. (2014). Disoluciones de silicato sódico procedentes del tratamiento de residuos vítreos. Estudio estadístico. Materiales De Construcción, 64(314), e014. https://doi.org/10.3989/mc.2014.05213

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>