Lodo de carbonato de la industria de celulosa como materia prima en las morteros de cemento
DOI:
https://doi.org/10.3989/mc.2014.00214Palabras clave:
Morteros, Lodo de carbonato, Caracterización, ValorizaciónResumen
Este estudio revela el uso de lodo de carbonato (LM) en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento) en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.
Descargas
Citas
1. Binici, H.; Shah, T.; Aksogan, O.; Kaplan, H. (2008) Durability of concrete made with granite and marble as recycle aggregates. J. Mat. Proc. Tech. 208, 299–308. http://dx.doi.org/10.1016/j.jmatprotec.2007.12.120
2. UMTC (1995) Use of recycled materials and recycled products in highway construction. University of Massachusetts Transportation Center Report UMTC-95-1, US, pp. 238–245.
3. OECD (1997). Road Transport Research: Recycling Strategies for Road Works. Organization for Economic Co-operation and Development (OECD), Paris, France, pp. 140–148.
4. Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C. (2009) Waste management from pulp and paper production in the European Union. Was. Manag. Res. 29, 293–308. http://dx.doi.org/10.1016/j.wasman.2008.02.002
5. Modolo, R.; Benta, A.; Ferreira, V.M.; Machado, L.M. (2010) Pulp and paper plant wastes valorisation in bituminous mixes. Was. Manag. 30, 685–696. http://dx.doi.org/10.1016/j.wasman.2009.11.005
6. Ahmadi, B.; Al-Khaja, W. (2001) Utilization of paper waste sludge in the building construction industry. Resour. Conser. Rec. 32 [2], 105–113. http://dx.doi.org/10.1016/S0921-3449(01)00051-9
7. Coutinho, J.S.; Garcia, M.L. (2008) Investigação inicial de resíduos da indústria de pasta de papel. In: Inovação na Construção Sustentável, v.1, 173–184, ISBN: 978-989-95978-0-8.
8. Cernec, F.; Zule, J.; Moze, A.; Ivanu, A. (2005) Chemical and microbiological stability of waste sludge from paper industry intended for brick production. Was. Manag. Res. 23, 106–112. http://dx.doi.org/10.1177/0734242X05053662
9. Modolo, R.; Ferreira, V.M.; Machado, L.M.; Rodrigues, M.; Coelho, I. (2011) Construction materials as a waste management solution for cellulose sludge. Was. Manag. 31, 370–377. http://dx.doi.org/10.1016/j.wasman.2010.09.017
10. Decree n.° 209 (2004) Portuguese legislation about the European list of wastes in accordance with Commission Decision 2000/532/EC of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste.
11. Gaskin, J. (2004) Land application of pulp mill lime mud. University of Georgia, College of Agriculture and Environmental Sciences, Cooperative Extension Service along with the Pollution Prevention Assistance Division. Bulletin 1249, Georgia, USA.
12. Li, Y.J.; Sun, R.Y.; Liu, C.T.; et al. (2012) CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles. Int J Greenhouse Gas Control 9, 117–123. http://dx.doi.org/10.1016/j.ijggc.2012.03.012
13. Ampadu, O.K.; Torii, K. (2002) Chloride ingress and steel corrosion in cement mortars incorporation low-quality fly ashes. Cem. Concr. Res. 32, 893–901. http://dx.doi.org/10.1016/S0008-8846(02)00721-4
14. Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn E.M.R. (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Comp. 30 [5], 410–418. http://dx.doi.org/10.1016/j.cemconcomp.2008.01.001
15. Rajamma, R.; Tarelho, L.A.C.; Alen, G.C.; Labrincha, J.A.; Ferreira, V.M. (2009) Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mat. 172, 1049–1060. http://dx.doi.org/10.1016/j.jhazmat.2009.07.109
16. Taylor, P.C.; Tait, R.B. (1999) Effects of fly, ash on fatigue and fracture properties of hardened cement mortars. Cem. Concr. Comp. 21 [3], 223–232. http://dx.doi.org/10.1016/S0958-9465(99)00005-0
17. Modolo, R.C.E.; Ferreira, V.M.; Tarelho, L.A.; Labrincha, J.A.; Senff, L.; Silva, L. (2013) Mortar formulations with bottom ash from biomass combustion. Constr. Build. Mat. 45, 275–281. http://dx.doi.org/10.1016/j.conbuildmat.2013.03.093
18. Pérez-Carrión, M.; Baeza-Brotons, F.; Payá, J.; Saval, J.M.; Zornoza, E.; Borrachero, M.; Garcés, P. (2014) Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks Mater. Construcc. 64 [313], e002. http://dx.doi.org/10.3989/mc.2014.06312
19. Argiz, C.; Menéndez, E.; Sanjuán, M.A. (2013) Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater. Construcc. 63 [309], 49–64.
20. Eroglu, H.; Acar Ucuncu, H.H.; Imamoglu, O. (2006) Soil stabilization of roads sub-base using lime-mud waste from the chemical recovery process in alkaline pulp mill. Jour. Appl. Sci. 6 [5] 1199–1203; ISSN 1812–5654.
21. Eroglu, H.; Acar Ucuncu, H.H.; I˙mamoglu, O. (2007) The effect of dry sludge addition supplied from pulp mill on the compressive strength of cement. Journal of the University of Chemical Technology and Metallurgy 42 [2]. 169–174.
22. Vuk, T.; Tinta, V.; Gabrovšek, R.; Kaucic, V. (2001) The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem. Concr. Res. 31, 135–139. http://dx.doi.org/10.1016/S0008-8846(00)00427-0
23. Benachour, Y.; Davy, C.A.; Skoczylas, F.; Houari, H. (2008) Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem. Concr Res. 38, 727–36. http://dx.doi.org/10.1016/j.cemconres.2008.02.007
24. Felekoglu, B. (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour. Conser Rec., 51 [4], 770–791. http://dx.doi.org/10.1016/j.resconrec.2006.12.004
25. EN 13139: 2003. Aggregates for Mortars.
26. ISO/TS 17892-3: 2004. Geotechnical investigation and testing laboratory testing of soil. Determination of particle density – Pycnometer method.
27. Paiva, H.; Esteves, L.P.; Cachim, P.B.; Ferreira, V.M. (2009) Rheology and hardened properties of single-coat render mortars with different. Constr. Build. Mat. 23 [2], 1141–1146. http://dx.doi.org/10.1016/j.conbuildmat.2008.06.001
28. Ferraris, C.F.; Brower, L.; Ozyıldırım, C.; Daczko, J. (2000) Workability of self-compacting concrete. In: Intern. Symp. High Perform. Concr. Proceedings. Florida: National Institute of Standards and Technology, 398–407.
29. Banfill, P.F.G. (2003) The rheology of fresh cement and concrete – a review, Proc. of 11th Intern. Congr. Chem. Cem., 50–62.
30. Senff, L.; Tobaldi, D.M.; Lucas, S.; Hotza, D.; Ferreira, V.M.; Labrincha, J.A. (2012) Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Comp. Part B, Eng. 44 [1], 40–47. http://dx.doi.org/10.1016/j.compositesb.2012.07.022
31. EN 1015-3:2007. Methods of test for mortar for masonry: determination of consistence of fresh mortar (by flow table).
32. NP EN 196-3: 2005. Methods of testing cement. Determination of setting times and soundness.
33. EN 1015-11: 1999. Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar.
34. EN 1015-2: 1998. Methods of test for mortar for masonry Part 2: Bulk sampling of mortars and preparation of test mortars.
35. EN 1015-10: 1999. Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar.
36. EN 1015-18: 2002. Methods of test for mortar for masonry. Water absorption by capillary.
37. Senff, L.; Hotza, D.; Labrincha, J.L. (2011) Effect of lightweight aggregates addition on the rheological properties and the hardened state of mortars. Appl. Rheol. 21 [1], 13668 (8 pages).
38. Vaysburd, A.M.; Emmons, P.H. (2004) Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts. Cem. Concr. Comp. 26 [3], 255–263. http://dx.doi.org/10.1016/S0958-9465(03)00044-1
39. Kaushik, S.K.; Islam, S. (1995) Suitability of sea water for mixing structural concrete exposed to a marine environment. Cem. Concr. Comp. 17 [3], 177–185. http://dx.doi.org/10.1016/0958-9465(95)00015-5
40. Sanjuan, M.A. (1997) Formation of chloroaluminates in calcium aluminate cements cured at high temperatures and exposed to chloride solutions. J. Mat. Sci. 32 [23], 6207–13. http://dx.doi.org/10.1023/A:1018624824702
41. Older, I. (1998) Lea's chemistry of cement and concrete. Arnold, London, (1998).
42. Soroka, I.; Stern, N. (1976) Calcareous fillers and the compressive strength of portland cement. Cem. Concr. Res. 6 [3], 367–376. http://dx.doi.org/10.1016/0008-8846(76)90099-5
43. Soroka, I.; Setter, N. (1977) The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7 [4], 449–456. http://dx.doi.org/10.1016/0008-8846(77)90073-4
44. Bédérina, M.; Khenfer, M.M.; Dheilly, R.M.; Quéneudec, M. (2005) Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cem. Concr. Res. 35 [6], 1172–1179. http://dx.doi.org/10.1016/j.cemconres.2004.07.006
45. Moosberg-Bustnes, H.; Lagerblad, B.; Forssberg, E. (2004) The function of filers in concrete. Mater. Struct. 37, 74–81. http://dx.doi.org/10.1617/13694
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.