External sulfate attack in dam concretes with thaumasite formation

Authors

  • S. Chinchón-Payá Universidad de Alicante
  • A. Aguado Universidad Politécnica de Cataluña
  • H. W. Nugterenc Delft University of Technology
  • S. Chinchón Universidad de Alicante

DOI:

https://doi.org/10.3989/mc.2015.10513

Keywords:

Concrete dam, Sulfate attack, Thaumasite

Abstract


Concrete core samples extracted from different areas of the Mequinenza Dam (Spain) have been studied and expansive reactions affecting the structure were not found. However, expansive reactions in the concrete of certain parts located near the abutments of two galleries have been observed as a consequence of an external sulfate attack due to the sulfur compounds contained in the lignites that are present on the surrounding terrain. Secondary gypsum, ettringite, and thaumasite, as well as several sulfate efflorescence have been detected. The thaumasite formed in the degraded concrete is related to a Thaumasite Sulfate Attack (TSA). Scanning Electron Microscopy (SEM) and Rietveld analyses of the TSA samples would show that thaumasite could have been formed thanks to ettringite acting as nuclei or by a direct precipitation from solutions within the pores of the cement matrix.

Downloads

Download data is not yet available.

References

1. Ayora, C.; Chinchón, S.; Aguado, A.; Guirado, F. (1998) Weathering of iron sulfides and concrete alteration: thermodynamic model and observation in dams from Central Pyrenees, Spain, Cem. Concr. Res. 28 [9], 1223–1235. http://dx.doi.org/10.1016/S0008-8846(98)00137-9

2. Chinchón, J.S.; Ayora, C.; Aguado, A.; Guirado, F. (1995) Influence of weathering of iron sulfides contained in aggregates on concrete durability, Cem. Concr. Res. 25 [6], 1264–1272. http://dx.doi.org/10.1016/0008-8846(95)00119-W

3. Casanova, I.; Agullo, L.; Aguado, A. (1996) Aggregate expansivity due to sulfide oxidation. 1. Reaction system and rate model, Cem. Concr. Res. 26 [7], 993–998. http://dx.doi.org/10.1016/0008-8846(96)00085-3

4. Collepardi, M. (2003) A state-of-the-art review on delayed ettringite attack on concrete, Cem. Concr. Comp. 25 [4–5], 401–407. http://dx.doi.org/10.1016/S0958-9465(02)00080-X

5. Neville, A. (2004) The confused world of sulfate attack on concrete, Cem. Concr. Res. 34 [8], 1275–1296. http://dx.doi.org/10.1016/j.cemconres.2004.04.004

6. Taylor, H.F.W. (1997) Cement chemistry: Thomas Telford. http://dx.doi.org/10.1680/cc.25929

7. Tian, B.; Cohen, M.D. (2000) Does gypsum formation during sulfate attack on concrete lead to expansion?, Cem. Concr. Res. 30 [1], 117–123. http://dx.doi.org/10.1016/S0008-8846(99)00211-2

8. Santhanam, M.; Cohen, M.D.; Olek, J. (2003) Effects of gypsum formation on the performance of cement mortars during external sulfate attack, Cem. Concr. Res. 33 [3], 325–332. http://dx.doi.org/10.1016/S0008-8846(02)00955-9

9. Chen, J.-K.; Jiang, M.-Q. (2009) Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion, Constr. Build. Mater. 23 [2], 812–816. http://dx.doi.org/10.1016/j.conbuildmat.2008.03.002

10. Lee, H.; Cody, R.; Cody, A.; Spry, P. (2005) The formation and role of ettringite in Iowa highway concrete deterioration, Cem. Concr. Res. 35 [2], 332–343. http://dx.doi.org/10.1016/j.cemconres.2004.05.029

11. Diamond, S. (1996) Delayed ettringite formation — Processes and problems, Cem. Concr. Comp. 18 [3], 205–215. http://dx.doi.org/10.1016/0958-9465(96)00017-0

12. Taylor, H.F.W.; Famy, C.; Scrivener, K.L. (2001) Delayed ettringite formation, Cem. Concr. Res. 31 [5], 683–693. http://dx.doi.org/10.1016/S0008-8846(01)00466-5

13. Pavoine, A.; Divet, L.; Fenouillet, S. (2006) A concrete performance test for delayed ettringite formation: Part I optimisation, Cem. Concr. Res. 36 [12], 2138–2143. http://dx.doi.org/10.1016/j.cemconres.2006.09.009

14. Thomas, M. (2003) Occurrences of thaumasite in laboratory and field concrete, Cem. Concr. Comp. 25 [8], 1045–1050. http://dx.doi.org/10.1016/S0958-9465(03)00134-3

15. Hagelia, P. (2003) Thaumasite and secondary calcite in some Norwegian concretes, Cem. Concr. Comp. 25 [8], 1131–1140. http://dx.doi.org/10.1016/S0958-9465(03)00143-4

16. Freyburg, E. (2003) Field experiences in concrete deterioration by thaumasite formation: possibilities and problems in thaumasite analysis, Cem. Concr. Comp. 25 [8], 1105–1110. http://dx.doi.org/10.1016/s0958-9465(03)00135-5

17. Sahu, S.; Badger, S.; Thaulow, N. (2002) Evidence of thaumasite formation in Southern California concrete, Cem. Concr. Comp. 24, 379–384. http://dx.doi.org/10.1016/S0958-9465(01)00090-7

18. Crammond, N. (2002) The occurrence of thaumasite in modern construction - a review, Cem. Concr. Comp. 24 [3–4], 393–402. http://dx.doi.org/10.1016/S0958-9465(01)00092-0

19. Rodrigues, A.; Duchesne, J.; Fournier, B.; Durand, B.; Rivard, P.; Shehata, M. (2012) Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms, Cem. Concr. Res. 42 [10], 1336–1347. http://dx.doi.org/10.1016/j.cemconres.2012.06.008

20. Mingyu, H.; Fumei, L.; Mingshu, T. (2006) The thaumasite form of sulfate attack in concrete of Yongan Dam, Cem. Concr. Res. 36 [10], 2006–2008. http://dx.doi.org/10.1016/j.cemconres.2006.04.005

21. Ma, B.; Gao, X.; Byars, E.A.; Zhou, Q. (2006) Thaumasite formation in a tunnel of Bapanxia Dam in Western China, Cem. Concr. Res. 36 [4], 716–722. http://dx.doi.org/10.1016/j.cemconres.2005.10.011

22. Crammond, N. (2003) The thaumasite form of sulfate attack in the UK, Cem. Concr. Comp. 25 [8], 809–818. http://dx.doi.org/10.1016/S0958-9465(03)00106-9

23. The_UK_Government_Thaumasite_Expert_Group (1999) The thaumasite form of sulfate attack: Risks, diagnosis, remedial works and guidance on new construction, in Report of the Thaumasite Expert Group, Department of the Environment, Transport and the Regions: London.

24. Brueckner, R. (2008) Accelerating the thaumasite form of sulfate attack and an investigation of its effects on skin friction, in Civil Engineering. University of Birmingham: Birmingham. PMCid:PMC2919240

25. Aguado, A.; Campos, A.; Chinchón-Payá, S.; López, C.M.; Pardo, F. (2011) Estudio del comportamiento de la presa de Mequinenza. UPC: Barcelona. 254.

26. Buil, J.; Río, F.; Campos, A.; López, C.M.; Aguado, A. (2012) Numerical analysis of Mequinenza Dam, in 24eme Congres des Grands Barrages. Commission Intern. des Grands Barrages: Kyoto. 12.

27. Navarro, J.; Van_Der_Hurk, A. (1992) Mapa Geológico de Espa-a 1:50.000, hoja n° 415 (Mequinenza). IGME, Madrid.

28. Mata-Perelló, J.M. (2009) Recorrido a través del patrimonio geológico y minero de los municipios de Mequinenza/ Mequinensa y Fayón/ Faió (cuenca lignitífera de Mequinenza, Bajo Cinca/Baix Cinca, Bajo Aragón de Caspe/ Baix Aragó de Casp), Revista de Geología serie B 231.

29. Baquer, E.; Caus, E.; Desir, G.; Navarro, J.M.; Panillo, D.; Pocoví, A. (1999) Pinceladas de Geología, Cuadernos de Estudios Caspolinos 24, 23–44.

30. Olivella, À. (2000) Estudi del sofre en combustibles fòssils, in Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera i Recursos Naturals. UPC: Barcelona. PMCid:PMC1301156

31. White, C.M.; Collins, L.W.; Veloski, G.A.; Irdi, G.A.; Rothenberger, K.S.; Gray, R.J.; LaCount, R.B.; Kasrai, M.; Bancroft, G.M. (1994) A study of Mequinenza lignite, Energy & Fuels 8 [1], 155–171. http://dx.doi.org/10.1021/ef00043a027

32. Fulloa, J. (2007) La cuenca lignitífera de Mequinenza: Características del mineral e implicaciones económicas, in I Encuentro de Jóvenes Investigadores en Historia Contemporánea de la AHC, IFC, Editor: Zaragoza. 11.

33. Rietveld, H. (1969) A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2 [2], 65–71. http://dx.doi.org/10.1107/S0021889869006558

34. Young, R.A. (1995) The Rietveld Method. Monographs on Crystallography: Oxford University Press.

35. Bish, D.L.; Howard, S.A. (1988) Quantitative phase analysis using the Rietveld method, Journal of Applied Crystallography 21 [2], 86–91. http://dx.doi.org/10.1107/S0021889887009415

36. Poole, A.B.; Thomas, A. (1975) A Staining Technique for the Identification of Sulphates in Aggregates and Concrete, Mineralogical Magazine 40, 315–316. http://dx.doi.org/10.1180/minmag.1975.040.311.15

37. Rodríguez-Carvajal, J. (1990) FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr: Toulouse (France). 127.

38. Barnett, S.J.; Adam, C.D.; Jackson, A.R.W. (2000) Solid so-lutions between ettringite, Ca6Al2(SO4)3(OH)12•26H2O, and thaumasite, Ca3SiSO4CO3(OH)6•12H2O, Journal of Materials Science 35 [16], 4109–4114. http://dx.doi.org/10.1023/A:1004898623884

39. Barnett, S.J.; Macphee, D.E.; Crammond, N.J. (2003) Extent of immiscibility in the ettringite–thaumasite system, Cem. Concr. Comp. 25 [8] 851–855. http://dx.doi.org/10.1016/S0958-9465(03)00116-1

Published

2015-03-30

How to Cite

Chinchón-Payá, S., Aguado, A., Nugterenc, H. W., & Chinchón, S. (2015). External sulfate attack in dam concretes with thaumasite formation. Materiales De Construcción, 65(317), e042. https://doi.org/10.3989/mc.2015.10513

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>