Desempeño a temperaturas elevadas de pastas de escoria activada alcalinamente producidas con activadores basados en humo de sílice y ceniza de cascarilla de arroz

Autores/as

  • S. A. Bernal Universidad del Valle - University of Sheffield
  • E. D. Rodríguez Universidad del Valle
  • R. Mejía de Gutiérrez Universidad del Valle
  • J. L. Provis University of Sheffield

DOI:

https://doi.org/10.3989/mc.2015.03114

Palabras clave:

Cementos de activación alcalina, Escoria de alto horno, Temperatura, propiedades físicas, Caracterización

Resumen


Este estudio evaluó las propiedades mecánicas, y cambios estructurales inducidos por exposición a temperaturas elevadas, de cementos de escoria activada alcalinamente producidos con silicatos sódicos derivados de humo de sílice (SF) y ceniza de cascarilla de arroz (RHA). Se identificaron productos de reacción similares, independiente del tipo de silicato utilizado, pero con diferencias menores en la composición de las geles C-S-H, lo cual indujo diferentes pérdidas de resistencia posterior a exposición a temperaturas elevadas. Los cementantes producidos con los activadores alternativos desarrollaron resistencias a la compresión más altas que aquellos producidos con silicato comercial. Todas las muestras retuvieron resistencias de más de 50 MPa posterior a la exposición a 600 °C, sin embargo, posterior a la exposición a 800 °C únicamente muestras producidas con activadores de RHA retuvieron resistencias medibles. Este estudio elucidó que cementantes de escoria activada con silicatos sódicos, ya sea comerciales o basados en SF o RHA, son estables hasta los 600 °C.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Delhomme, F.; Ambroise, J.; Limam, A. (2012) Effects of high temperatures on mortar specimens containing Portland cement and GGBFS. Mater. Struct. 45 [11], 1685–1692. http://dx.doi.org/10.1617/s11527-012-9865-7

2. Matesová, D.; Bonen, D.; Shah, S.P. (2006) Factors affecting the resistance of cementitious materials at high temperatures and medium heating rates. Mater. Struct. 39 [9], 919–935. http://dx.doi.org/10.1617/s11527-006-9198-5

3. Handoo, S.K.; Agarwal, S.; Agarwal, S.K. (2002) Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem. Concr. Res. 32, 1009–1018. http://dx.doi.org/10.1016/S0008-8846(01)00736-0

4. Alarcon-Ruíz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. (2005) The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35, 609–613. http://dx.doi.org/10.1016/j.cemconres.2004.06.015

5. Provis, J.L. (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47, 11–25. http://dx.doi.org/10.1617/s11527-013-0211-5

6. Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243. http://dx.doi.org/10.1016/j.cemconres.2010.11.012

7. Provis, J.L.; Bernal, S.A. (2014) Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327. http://dx.doi.org/10.1146/annurev-matsci-070813-113515

8. Bernal, S.A.; San Nicolas, R.; Myers, R.J.; Mejía de Gutiérrez, R.; Puertas, F.; van Deventer, J.S.J.; Provis, J.L. (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57, 33–43. http://dx.doi.org/10.1016/j.cemconres.2013.12.003

9. Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315].

10. Guerrieri, M.; Sanjayan, J.G. (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater. 34 [4], 163–175.

11. Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc. 56 [283], 79–90.

12. Kong, D.L.Y.; Sanjayan, J.G. (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40, 334–339. http://dx.doi.org/10.1016/j.cemconres.2009.10.017

13. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Gordillo, M.; Provis, J.L. (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46, 5477–5486. http://dx.doi.org/10.1007/s10853-011-5490-z

14. Bernal, S.A.; Mejía de Gutiérrez, R.; Ruiz, F.; Qui-ones, H.; Provis, J.L. (2012) High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends. Mater. Constr. 62, 471–488. http://dx.doi.org/10.3989/mc.2012.01712

15. Rickard, W.D.A.; Williams, R.; Temuujin, J.; van Riessen, A. (2011) Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 528, 3390–3397. http://dx.doi.org/10.1016/j.msea.2011.01.005

16. Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Collier, N.C.; Milestone, N.B. (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 42, 333–343. http://dx.doi.org/10.1016/j.cemconres.2011.10.007

17. Mejía de Gutiérrez, R.; Maldonado, J.; Gutiérrez, C. (2004) Resistencia a temperaturas elevadas de escoria activadas alcalinamente. Mater. Constr. 54, 87–92. http://dx.doi.org/10.3989/mc.2004.v54.i276.257

18. Guerrieri, M.; Sanjayan, J.; Collins, F. (2009) Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 33, 51–62. http://dx.doi.org/10.1002/fam.983

19. Guerrieri, M.; Sanjayan, J.; Collins, F. (2010) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater. Struct. 43, 765–773. http://dx.doi.org/10.1617/s11527-009-9546-3

20. Zuda, L.; Drchalová, J.; Rovnaník, P.; Bayer, P.; Keršner, Z.; Cerny, R. (2010) Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties. Cem. Concr. Compos. 32, 157–163. http://dx.doi.org/10.1016/j.cemconcomp.2009.11.009

21. Zuda, L.; Cˇerny´, R. (2009) Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000 °C. Cem. Concr. Compos. 31, 263–267. http://dx.doi.org/10.1016/j.cemconcomp.2009.02.002

22. Rovnaník, P.; Bayer, P.; Rovnaníková, P. (2013) Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 47, 1479–1487. http://dx.doi.org/10.1016/j.conbuildmat.2013.06.070

23. Živica, V. (2006) Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28, 21–25. http://dx.doi.org/10.1016/j.cemconcomp.2005.07.004

24. Živica, V. (2004) High effective silica fume alkali activator. Bull. Mater. Sci. 27, 179–182. http://dx.doi.org/10.1007/BF02708502

25. Rouseková, I.; Bajza, A.; Živica, V. (1997) Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27, 1825–1828. http://dx.doi.org/10.1016/S0008-8846(97)00191-9

26. Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Paya, J.; Monzo, J.M.; Borrachero, M.V. (2013) Effect of nanosilica- based activators on the performance of an alkali-activated fly ash binder. Cem. Concr. Compos. 35, 1–11. http://dx.doi.org/10.1016/j.cemconcomp.2012.08.025

27. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Constr. 63, 361–375.

28. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Provis, J.L.; Delvasto, S. (2012) Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valoriz. 3, 99–108. http://dx.doi.org/10.1007/s12649-011-9093-3

29. Torres-Carrasco, M.; Palomo, J. G.; Puertas, F. (2014) Sodium Silicate from dissolution of glass wastes. Statistical analyses. Mater. Construcc. 64 [314].

30. Salas, A.; Delvasto, S.; Mejía de Gutierrez, R.; Lange, D. (2009) Comparison of two processes for treating rice husk ash for use in high performance concrete. Cem. Concr. Res. 39, 773–778. http://dx.doi.org/10.1016/j.cemconres.2009.05.006

31. Bernal, S.A.; Provis, J.L.; Mejía de Gutierrez, R.; Rose, V. (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54. http://dx.doi.org/10.1016/j.cemconcomp.2010.09.004

32. Yu, Q.; Sawayama, K.; Sugita, S.; Shoya, M.; Isojima, Y. (1999) The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product. Cem. Concr. Res. 29, 37–43. http://dx.doi.org/10.1016/S0008-8846(98)00172-0

33. Lee, W.K.W.; van Deventer, J.S.J. (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19, 8726–8734. http://dx.doi.org/10.1021/la026127e

34. Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82 [3], 742–48. http://dx.doi.org/10.1111/j.1151-2916.1999.tb01826.x

35. García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. (2009) Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153. http://dx.doi.org/10.1016/j.cemconres.2009.01.003

36. García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. (2008) FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H. J. Sol-Gel. Sci. Technol. 45, 63–72. http://dx.doi.org/10.1007/s10971-007-1643-6

37. Reig, F.B.; Adelantado, J.V.G.; Moya Moreno, M.C.M. (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58, 811–821. http://dx.doi.org/10.1016/S0039-9140(02)00372-7

38. Siriwardane, R.V.; Shen, M.-S.; Fisher, E.P.; Losch, J. (2005) Adsorption of CO2 on Zeolites at Moderate Temperatures. Energ. Fuel 19, 1153–1159. http://dx.doi.org/10.1021/ef040059h

39. Stevens, R.W.; Siriwardane, R.V.; Logan, J. (2008) In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energ. Fuel 22, 3070–3079. http://dx.doi.org/10.1021/ef800209a

40. Holmgren, A.; Wu, L.; Forsling, W. (1994) Surface hydration of aqueous calcium minerals as studied by Fourier transform Raman and infrared spectroscopy. Spectrochim. Acta, Part A 50, 1857–1869. http://dx.doi.org/10.1016/0584-8539(94)80198-3

Publicado

2015-06-30

Cómo citar

Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Desempeño a temperaturas elevadas de pastas de escoria activada alcalinamente producidas con activadores basados en humo de sílice y ceniza de cascarilla de arroz. Materiales De Construcción, 65(318), e049. https://doi.org/10.3989/mc.2015.03114

Número

Sección

Artículos