Cápsulas que desarrollan gradualmente su fragilidad a fin de resistir la preparación de hormigón auto-reparable

Autores/as

  • E. Gruyaert Magnel Laboratory for Concrete Research, Department of Structural Engineerin, Faculty of Engineering and Architecture, Ghent University
  • K. Van Tittelboom Magnel Laboratory for Concrete Research, Department of Structural Engineerin, Faculty of Engineering and Architecture, Ghent University
  • J. Sucaet Magnel Laboratory for Concrete Research, Department of Structural Engineerin, Faculty of Engineering and Architecture, Ghent University
  • J. Anrijs Magnel Laboratory for Concrete Research, Department of Structural Engineerin, Faculty of Engineering and Architecture, Ghent University
  • S. Van Vlierberghe Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University
  • P. Dubruel Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University
  • B. G. De Geest Department of Pharmaceutics, Ghent University
  • J. P. Remon Department of Pharmaceutics, Ghent University
  • N. De Belie Magnel Laboratory for Concrete Research, Department of Structural Engineerin, Faculty of Engineering and Architecture, Ghent University

DOI:

https://doi.org/10.3989/mc.2016.07115

Palabras clave:

Hormigón, Mortero, Polímero, Durabilidad, Propiedades mecánicas

Resumen


Las cápsulas para la auto-reparación del hormigón tienen que poseer propiedades multifuncionales. Una enorme ventaja en el proceso para su valorización se obtendría si aquellas pudieran resistir con éxito el mezclado. Por lo tanto, nos propusimos desarrollar cápsulas cuya fragilidad evoluciona. Cápsulas con una alta flexibilidad inicial se prepararon mediante la adición de un plastificante a una matriz de etil celulosa. Durante el endurecimiento del hormigón, el agente plastificante debe filtrarse hacia el medio ambiente húmedo produciendo cápsulas más frágiles que se rompen con el surgimiento de fisuras. Las cápsulas pudieron ser fácilmente mezcladas durante la producción de hormigón. Sin embargo, aparecieron problemas de incompatibilidad entre la pared de la cápsula y el agente de curación polimérico interior. Por otra parte, las cápsulas se comportaron insuficientemente frágiles y con una baja adherencia hacia la matriz cementicia. En consecuencia, se probaron las cápsulas multicapa. Estas cápsulas tenían una alta resistencia al impacto para sobrevivir el mezclado del hormigón y fueron capaces de romperse luego de la formación de fisuras.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Dry, C. (1994) Smart multiphase composite materials that repair themselves by a release of liquids that become solids, in: Proceedings SPIE 2189, Smart Structures and Materials 1994: Smart Materials, 62–70. http://dx.doi.org/10.1117/12.174085

2. Dry, C.; McMillan, W. (1996) Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Materials and Structures 5, 297–300. http://dx.doi.org/10.1088/0964-1726/5/3/007

3. Dry, C. (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem. Concr. Res. 30, 1969–1977. http://dx.doi.org/10.1016/S0008-8846(00)00415-4

4. Dry, C.; Corsaw, M. (2003) A comparison of bending strength between adhesive and steel reinforced concrete with steel only reinforced concrete. Cem. Concr. Res 33, 1723–1727. http://dx.doi.org/10.1016/S0008-8846(03)00102-9

5. Mihasi, H.; Kaneko, Y.; Nishiwaki T.; Otsuka K. (2000) Fundamental study on development of intelligent concrete characterized by self-healing capability for strength. Transactions of the Japan Concrete Institute 22, 441–450.

6. Zhang, M.; Han, N.; Xing, F.; Wang, X.; Schlangen, E. (2013) Design of microcapsule system used for self-healing cementitious material, in: N. De Belie, S. van der Zwaag, E. Gruyaert, K. Van Tittelboom, B. Debbaut (Eds.) Fourth international conference on self-healing materials, Ghent, Belgium, 109.

7. Cailleux, E.; Pollet, V. (2009) Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars, in: Second International Conference on Self Healing Materials, 120.

8. Kaltzakorta, I.; Erkizial, E. (2011) Silica microcapsules encapsulating epoxy compounds for self-healing cementitious materials, in: I. Bond, R. Varley (Eds.) Third international conference self-healing materials, Bath, United Kingdom, 271–272.

9. Li, W.; Buhrow, J.W.; Calle, L.M. (2011) Synthesis of elongated microcapsules, in: I. Bond, R. Varley (Eds.) Third international conference self-healing materials, Bath, United Kingdom, 273–274.

10. Yang, Z.; Hollar, J.; He, X.; Shi, X. (2011) A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Comp. 33, 506–512. http://dx.doi.org/ 10.1016/j.cemconcomp.2011.01.010. http://dx.doi.org/10.1016/j.cemconcomp.2011.01.010

11. Wang, J.; Soens, H.; Verstraete, W.; De Belie, N. (2014) Self-healing concrete by use of microencapsulated bacterial spores, Cem. Concr. Res. 56, 139–152. http://dx.doi.org/10.1016/j.cemconres.2013.11.009

12. Joseph, C.; Jefferson, A.D.; Canoni, M.B. (2007) Issues relating to the autonomic healing of cementitious materials, in: First International Conference on Self-healing Materials, 1–8. PMCid:PMC1783642

13. Li, V.C.; Lim, Y.M.; Chan Y.-W. (1998) Feasibility study of a passive smart self-healing cementitious composite. Compos. Part B: Eng. 29, 819–827. http://dx.doi.org/10.1016/S1359-8368(98)00034-1

14. Thao, T.D.P.; Johnson, T.J.S.; Tong, Q.S.; Dai, P.S. (2009) Implementation of self healing in concrete - Proof of concept. The IES Journal Part A: Civil & Structural Engineering 2, 116–125. http://dx.doi.org/10.1080/19373260902843506

15. Mookhoek, S.D.; Fischer, H.R.; van der Zwaag, S. (2009) A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems. Comp. Mater. Sci. 47, 506–511. http://dx.doi.org/10.1016/j.commatsci.2009.09.017

16. Mookhoek, S.D. (2010) Novel routes to liquid-based self-healing polymer systems, PhD, Technische Universiteit Delft, Delft.

17. Hilloulin, B.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Loukili, A. (2015) Design of polymeric capsules for self-healing concrete. Cem. Concr. Comp 55, 298–307. http://dx.doi.org/10.1016/j.cemconcomp.2014.09.022

18. Nishiwaki, T.; Oohira, A.; Pareek, S. (2011) An experimental study on the application of self-repairing system to RC structures using selective heating, in: I. Bond, R. Varley (Eds.) Third international conference self-healing materials, Bath, United Kingdom, 320–321.

19. Isaacs, B.; Lark, R.J.; Jefferson, A.D.; Gardner, D.; Dunn, S. (2011) Enhancement of self-healing in cementitious materials, in: I. Bond, R. Varley (Eds.) Third international conference self-healing materials, Bath, United Kingdom, 119–120.

20. Dry, C.; Corsaw, M.; Bayer, E. (2003) A comparison of internal self-repair with resin injection in repair of concrete. J. Adhes. Sci. Technol. 17, 79–89. http://dx.doi.org/10.1163/15685610360472457

21. Sangadji, S.; Schlangen, E. (2011) Porous network concrete: a new approach to make concrete structures self-healing using prefabricated porous layer, in: I. Bond, R. Varley (Eds.) Third international conference self-healing materials, Bath, United Kingdom, 291–292.

22. Van Tittelboom, K. (2012) Self-healing concrete through incorporation of encapsulated bacteria- or polymer-based healing agents, PhD, Ghent University, Ghent.

23. Rahman, M.; Brazel, C.S. (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 29, 1223–1248. http://dx.doi.org/10.1016/j.progpolymsci.2004.10.001

24. Bruneel, D; Dirinck, P. (2007) Organische Chemie Deel 1 (in Dutch), Kaho Sint-Lieven. PMCid:PMC2675417

25. Ray, J.A. (1978) Hydraulic cement mixes and process for improving hydraulic cement mixes (US4089696).

26. Windels, C. (2010) Optimale samenstelling en duurzaamheid van volledig recycleerbaar beton (in Dutch), Master thesis at Ghent University, Ghent.

27. Rowe, R.C.; Sheskey, P.J.; Owen, S.C. (2006) Handbook of Pharmaceutical Excipients (fifth edition), Washington D.C.

Publicado

2016-09-30

Cómo citar

Gruyaert, E., Van Tittelboom, K., Sucaet, J., Anrijs, J., Van Vlierberghe, S., Dubruel, P., De Geest, B. G., Remon, J. P., & De Belie, N. (2016). Cápsulas que desarrollan gradualmente su fragilidad a fin de resistir la preparación de hormigón auto-reparable. Materiales De Construcción, 66(323), e092. https://doi.org/10.3989/mc.2016.07115

Número

Sección

Artículos