Nuevo material compuesto de matriz geopolimérica activado con ceniza de cascarilla de arroz y KOH: Desempeño a alta temperatura

Autores/as

DOI:

https://doi.org/10.3989/mc.2017.02316

Palabras clave:

Compuesto, Metacaolín, Cemento de activación alcalina, Propiedades mecánicas, Análisis térmico

Resumen


Compuestos geopoliméricos fueron producidos usando un activador alcalino alternativo (basado en ceniza de cascarilla de arroz e hidróxido de potasio), partículas aluminosilicatos, fibras de carbono y cerámicas. Se estudió el efecto de fibras y partículas en la resistencia a la flexión, contracción lineal, propiedades termofísicas y microestructura de los geopolímeros a temperatura ambiente y 1200 °C. Los resultados indican que la tenacidad se incrementó 110.4% para el geopolímero reforzado con fibras cerámicas (G-AF) a temperatura ambiente. La presencia de partículas mejora el comportamiento a la flexión 265% para el geopolímero reforzado con fibras de carbono y partículas después de la exposición a 1200 °C. La contracción lineal para el geopolímero reforzado con fibras cerámicas y partículas y el geopolímero G-AF es mejorada 27.88% y 7.88% respectivamente a 900 ºC con respecto al material sin refuerzo. Los materiales geopoliméricos desarrollados en este estudio son materiales porosos de baja conductividad térmica y buenas propiedades mecánicas con potencial aplicación en la industria de la construcción como aislantes térmicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Torres-carrasco, M.; Palomo, J.G.; Puertas, F. (2014) Sodium silicate solutions from dissolution of glass wastes . Statistical analysis. Mater. Construcc. 64 [314], 1-14. https://doi.org/10.3989/mc.2014.05213

Bajza, A.; Rousekova, I.; Zivica, V. (1998) Silica fumesodium hydroxide binding Systems. Cem. Concr. Res. 28 [1], 13-18. https://doi.org/10.1016/S0008-8846(97)00192-0

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Provis, J.; Delvasto, S. (2011) Activation of Metakaolin/ Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization. 3 [1], 99-108. https://doi.org/10.1007/s12649-011-9093-3

Detphan, S.;Chindaprasirt, P. (2009) Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16 [6], 720-726.

Trochez, J.J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S.A. (2015) Synthesis of geopolymer from spent FCC : Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317], e046. https://doi.org/10.3989/mc.2015.00814

Robayo, E.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321], e077. https://doi.org/10.3989/mc.2016.03615

Fawer, M.; Concannon, M.:Rieber, W. (1999) Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Asses. 4 [4], 201-212. https://doi.org/10.1007/bf02979498

Deabriges, J. (1982) Process for the manufacture of sodium silicate. United States Patent 4336235

Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.;Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci. 118, 276-282. https://doi.org/10.1016/j.clay.2015.10.005

Villaquirán-Caicedo, M.A.; Rodríguez, E.D.; Mejía de Gutierrez, R. (2015) Evaluacion microestructural de geopolimeros basados en metacaolin y fuentes alternativas de silice expuestos a temperaturas altas. Ing. Investig. y Tecnol. 16 [1], 113-122, ISSN 1405-7743.

Villaquirán-Caicedo M.A.; Mejía de Gutierrez, R. (2015) Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash, DYNA, 82 [194], 104-110. https://doi.org/10.15446/dyna.v82n194.46352

Nazari A.; Rohani, A.F. (2012) Alkali-activated geopolymer produced by seeded fly ash and rice husk bark ash. Adv. Cem. Res. 24 [5], 301-309. https://doi.org/10.1680/adcr.11.00038

Mejía, J.M.; Mejía de Gutierrez, R.;Montes, C. (2016) Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 118, 133-139. https://doi.org/10.1016/j.jclepro.2016.01.057

Haeng Heo, U.; Sankar, K.; Kriven, W.M.; Musil, S.S. (2014) Rice Husk Ash as a Silica Source in a Geopolymer Formulation," in Developments in Strategic Materials and Computational Design V: A Collection of Papers Presented at the 38th International Conference on Advanced Ceramics and Composites.

Fongang, R.T.; Pemndje, J.; Lemougna, P.N.; Melo, U.C.; Nanseu, C.P.; Nait-Ali, B.; Kamseu, E. and Leonelli, C. (2015) Cleaner production of the lightweight insulating composites: Microstructure, pore network and thermal conductivity," Energy Build. 107, 113-122. https://doi.org/10.1016/j.enbuild.2015.08.009

Bouzón, N.; Payá, J.; Borrachero M.V.; Soriano, L.; Tashima, M.M. and Monzó, J. (2014) Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders, Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001

Mejía, J.M.; Mejía de Gutierrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Constr. 63 [311], 361-375.

Zivica, V. (2006) Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28 [1], 21-25. https://doi.org/10.1016/j.cemconcomp.2005.07.004

Prud'homme, E.; Michaud, P.; Joussein, E.; Peyratou, C.; Smith, A.; Arrii-Clacens S.; Clacens, J.M.; Rossignol, S. (2010) Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 30 [7], 1641-1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014

Prud'homme, E.; Michaud, P.; Joussein, E.; Peyratou, C.; Smith, A.; Rossignol, S. (2011) In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 51 [1-2], 15-22. https://doi.org/10.1016/j.clay.2010.10.016

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J.L. (2015) Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater. Construcc. 65 [318], e049. https://doi.org/10.3989/mc.2015.03114

Torres-Carrasco M.; Puertas, F. (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod., 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074

Torres-Carrasco, M.; Rodríguez-Puertas, C.; Alonso, M.; Puertas, F. (2015) Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletín la Soc. Espa-ola Cerámica y Vidr. 54 [2], 45-57. https://doi.org/10.1016/j.bsecv.2015.03.004

Badanoiu, A.I.; Al Saadi, T.H.; Stoleriu, S.; Voicu, G. (2015) Preparation and characterization of foamed geopolymers from waste glass and red mud. Constr. Build. Mater. 84, 284-293. https://doi.org/10.1016/j.conbuildmat.2015.03.004

Tchakouté, H.K.; Cru_scher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 114, 276-289. https://doi.org/10.1016/j.conbuildmat.2016.03.184

Autef, A.; Joussein, E.; Gasgnier, G.;Rossignol, S. (2012) Role of the silica source on the geopolymerization rate. J. Non. Cryst. Solids. 358 [21], 2886-2893. https://doi.org/10.1016/j.jnoncrysol.2012.07.015

Tawfik, A.F.; El-raoof, A.; Katsuki, H.; Mackenzie, K.J. D.; Komarneni, S. (2016) K-Based Geopolymer from metakaolin : roles of K/Al ratio and water or steam Curing at different temperatures. Mater. Construcc. 66 [322], e081. https://doi.org/10.3989/mc.2016.03115

Ahmed, Y.M.; Ewais, E.; Zaki, Z. (2008) Production of porous silica by the combustion of rice husk ash for tundish lining. J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater. 15 [3], 307-313. https://doi.org/10.1016/s1005-8850(08)60058-4

Sun, L.; Gong, K. (2001) Silicon-Based Materials from Rice Husks and Their Applications. Ind. Eng. Chem. Res. 40 [25], 5861-5877. https://doi.org/10.1021/ie010284b

Krishnarao, R.; Subrahmanyam, J.; Jagadish Kumar, T. (2001) Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21 [1] 99-104. https://doi.org/10.1016/S0955-2219(00)00170-9

Hwang C.L.; Huynh, T.P. (2015) Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks. Constr. Build. Mater. 93, 335-341. https://doi.org/10.1016/j.conbuildmat.2015.04.061

FAO (2013) Rice Market Monitor, Food Agric. Organ. United Nations. 16 (4), 1-38.

USA Rice Federation. 201. Facts. [Online]. Available: http://www.usarice.com/

DANE. (2015) Boletín Técnico. Available: http://www.dane.gov.co/files/investigaciones/boletines/arroz/bol_arroz_Isem15.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Wang, H.; Li, H.; Yan, F. (2005) Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE. Wear. 258 [10], 1562-1566. https://doi.org/10.1016/j.wear.2004.11.001

Puertas, F.; Amat, T.; Vázquez, T. (2000) Comportamiento de morteros de cementos alcalinos reforzados con fibras acrílicas y de polipropileno. Mater. construcc. 50 [259], 69-84. https://doi.org/10.3989/mc.2000.v50.i259.400

Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Simon, H.; Metselaar, C. and Zamin, M. (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73-81. https://doi.org/10.1016/j.compscitech.2015.11.009

Yunsheng, Z.; Wei, S.; Zongjin, L.; Xiangming, Z.; Chungkong, C. (2008) Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr. Build. Mater. 22 [3] pp. 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006

Musil, S.; Kutyla, G.; Kriven, W.M. (2013) The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer. Ceram. Eng. Sci. Proceed. 33 [10], 31-42.

Dias D.P.;Thaumaturgo, C. (2005) Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 27 [1], 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044

Giancaspro, J.; Papakonstantinou, C.G.;Balaguru, P.N. (2010) Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers. J. Eng. Mater. Technol. 132 [2], 021005. https://doi.org/10.1115/1.4000670

Puertas F. ; Gil-Maroto, A. (2006) Alkali-activated slag mortars reinforced with ar glassfibre: Performance and properties. Mater. Constr. 56 [283], 79-90. https://doi.org/10.3989/mc.2006.v56.i283.10

Lin, T.; Jia, D.; Wang, M.; He, P.G.; Liang, D. (2009) Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites. Bull. Mater. Sci. 32 [1], 77-81. https://doi.org/10.1007/s12034-009-0011-2

Alcaide, J.S.; Alcocel, E.G. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 57 [288], 33-48.

Bernal, S.; Bejarano, J.; Garzón, C.; Mejía de Gutierrez, R.; Delvasto, S.; Rodríguez, E. (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos. Part B Eng. 43 [4], 1919-1928. https://doi.org/10.1016/j.compositesb.2012.02.027

Silva F.J.;Thaumaturgo, C. (2003) Fibre reinforcement and fracture response in geopolymeric mortars. Fatigue Fract. Eng. Mater. Struct. 26 [2], 167-172. https://doi.org/10.1046/j.1460-2695.2003.00625.x

Bernal, S.; Mejía de Gutierrez, R.; Delvasto, S.; Rodríguez, E. (2010) Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24 [2], 208-214. https://doi.org/10.1016/j.conbuildmat.2007.10.027

He, P.; Jia, D.; Lin, T.; Wang, M.; Zhao, Y. (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 36 [4], 1447-1453. https://doi.org/10.1016/j.ceramint.2010.02.012

Kamseu, E.; Rizzuti, A.; Leonelli, C.; Perera, D. (2010) Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. J. Mater. Sci. 45 [7], 1715-1724. https://doi.org/10.1007/s10853-009-4108-1

Phair, J.W.; Van Deventer, J.; Smith, J.D. (2000) Mechanism of Polysialation in the Incorporation of Zirconia into Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 39 [8], 2925-2934. https://doi.org/10.1021/ie990929w

Tie-song, L.; De-chang, J.; Pei-gang, H.; Mei-rong, W. (2009) Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load. J. Cent. South Univ. Technol. 16 [6], 881-886. https://doi.org/10.1007/s11771-009-0146-8

Kuenzel, C.; Li, L.; Vandeperre, L.; Boccaccini, A.; Cheeseman, C. (2014) Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 66, 442-446. https://doi.org/10.1016/j.conbuildmat.2014.05.058

Duxson, P.; Lukey, G.C. and Deventer, J. (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 42 [9], 3044-3054. https://doi.org/10.1007/s10853-006-0535-4

He, P.; Yang, Z.; Yang, J.; Duan, X.; Jia, D.; Wang, S.; Zhao, Y.; Wang, Y.; Zhang, P. (2015) Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures. Compos. Sci. Technol. 107, 44-53. https://doi.org/10.1016/j.compscitech.2014.11.009

American Society for Testing & Materials. (2013) C1341 Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites. 56. Parker, W.; Jenkins, R.; Butler, C.; Abbott, J. (1961) A Flash Method of Determining thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Appl. Phys. 32, 714-719. http://dx.doi.org/10.1063/1.1728417 https://doi.org/10.1063/1.1728417

Zhang, M.H.; Lastra, R.; Malhotra, V. (1996) Rice Husk Ash Paste and Concrete: some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem. Concr. Res. 26 [6], 963-977. https://doi.org/10.1016/0008-8846(96)00061-0

He, P.G.; Jia, D.; Wang, M.; Zhao, Y. (2010) Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer. Ceram Int. 36 [8], 2395-2400. https://doi.org/10.1016/j.ceramint.2010.07.015

Masi, G.; Rickard W.; Bignozzi M.; Van Riessen, A. (2015) The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part B Eng. 76, 218-228. https://doi.org/10.1016/j.compositesb.2015.02.023

Zhang, H.Y.; Kodur, V.; Cao, L.; Qi, S. (2014) Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 71, 153-158. https://doi.org/10.1016/j.proeng.2014.04.022

Karim, M.R.; Zain, M.F.; Jamil, M.; Lai, F.C. (2013) Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr. Build. Mater. 49, 894-902. https://doi.org/10.1016/j.conbuildmat.2013.08.077

Luna-Galiano, Y.; Cornejo, A.; Leiva, C.; Vilches, L.; Fernández-Pereira, C. (2015) Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Mater. Construcc. 65 [319], e059. https://doi.org/10.3989/mc.2015.06114

Lyon, R.; Balaguru, P.; Foden, A. (1997) Fire-resistant aluminosilicate composites. Fire Mater. 21, 67-73. https://doi.org/10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N

Martauz, P.; Janotka, I.; Strigác, J.; Bacauvcík, M. (2016) Fundamental properties of industrial hybrid cement : utilization in ready-mixed concretes and shrinkage-reducing applications. Mater. Construcc. 66 [322], e084. https://doi.org/10.3989/mc.2016.04615

Latella, B.A.; Perera, D.; Durce, D.; Mehrtens, E.G. and Davis, J. (2008) Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1," J. Mater. Sci. 43 [8], 2693-2699. https://doi.org/10.1007/s10853-007-2412-1

Zuda, L.; Drchalová J.; Rovnaník, P.; Bayer, P.; Ker_ner, Z.; _erny_, R. (2010) Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties. Cem. Concr. Compos. 32 [2], 157-163. https://doi.org/10.1016/j.cemconcomp.2009.11.009

Rickard, W.D.; Van Riessen, A.; Walls, P. (2010) Thermal Character of Geopolymers Synthesized from Class F Fly Ash Containing High Concentrations of Iron and Éø-Quartz. Int. J. Appl. Ceram. Technol. 7 [1], 81-88. https://doi.org/10.1111/j.1744-7402.2008.02328.x

Van Riessen A.; Rickard W.D.; Sanyan, J. (2009) Thermal properties of geopolymers, Geopolymers: Structures, Processing, Properties and Industrial Applications. ed Provis, J.L and Van Deventer, J.S.J., 315-342. Cmabridge, UK: Woodhead Publishing Limited.

Barbosa V.F. and MacKenzie, K.J. (2003) Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 57 [9-10], 1477-1482. https://doi.org/10.1016/S0167-577X(02)01009-1

Bell, J.L.; Driemeyer, P.E.; Kriven, W.M. (2009) Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc. 92 [3], 607-615. https://doi.org/10.1111/j.1551-2916.2008.02922.x

Duxson, P.; Lukey, G.C.; Van Deventer, J.S.J. (2006) Thermal evolution of metakaolin geopolymers: Part 1 - Physical evolution. J. Non. Cryst. Solids. 352 [52-54], 5541-5555. https://doi.org/10.1016/j.jnoncrysol.2006.09.019

Jonker, A.; McCrindle, R.I.; Van der Merwe, M. (2009) Insulating Refractory Materials from Inorganic waste Sources. The Refractories Engineer. 14-19. Available in http://www.irengineers.co.uk

Kamseu, E.B.; Ceron, H.; Tobias, E.; Leonelli, M.C.; Bignozzi, A.; Muscio, A.; Libbra, A. (2011) Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J. Therm. Anal. Calorim. 108 [3], 1189-1199. https://doi.org/10.1007/s10973-011-1798-9

Duxson, P.; Lukey, G.C. and Van Deventer, J.S.J. (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir. 22 [21], 8750-8757, Oct. https://doi.org/10.1021/la0604026 PMid:17014113

Kamseu, E.; Nait-Ali, B.; Bignozzi, M.C.; Leonelli, C.; Rossignol, S. and Smith, D.S. (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 32 [8], 1593-1603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

CTE, Catálogo de elementos constructivos. Código técnico de la edificación. Madrid, ESPAÑA, 2010. Avalaible in http://www.codigotecnico.org/images/stories/pdf/aplicaciones/nCatalog_infoEConstr/CAT-EC-v06.3_marzo_10.pdf

Zhang, Y.; Lv, M.; Chen, D. and Wu, J. (2007) Leucite crystallization kinetics with kalsilite as a transition phase," Mater. Lett. 61 [14-15], 2978-2981. https://doi.org/10.1016/j.matlet.2006.10.057

Publicado

2017-06-30

Cómo citar

Villaquirán-Caicedo, M. A., Mejía de Gutiérrez, R., & Gallego, N. C. (2017). Nuevo material compuesto de matriz geopolimérica activado con ceniza de cascarilla de arroz y KOH: Desempeño a alta temperatura. Materiales De Construcción, 67(326), e117. https://doi.org/10.3989/mc.2017.02316

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>