Adsorción de aditivos PCE y BNS en arenas con diferente composición y distribución de tamaño de partículas

Autores/as

DOI:

https://doi.org/10.3989/mc.2017.08116

Palabras clave:

Arena, Superplastificante, Arcilla, Finura, Compatibilidad

Resumen


La elección de un superplastificante (SP) para el hormigón es un proceso complejo, ya que las propiedades del producto final se relacionan con la naturaleza del aditivo y su compatibilidad con los componentes del hormigón. Sin embargo hay pocos estudios sobre la compatibilidad entre los SPs y arenas utilizadas en morteros y hormigones. En la práctica se ha demostrado que la finura y la composición mineralógica de la arena afectan a la demanda de agua y al consumo de SPs. Las arcillas que pueden encontrarse en las arenas pueden también adsorber aditivos, reduciendo la cantidad disponible en solución para la adsorción por el cemento. Se han analizado las isotermas de adsorción para SPs de tipo PCE y BNS en cuatro arenas de diferente finura y composicion comúnmente utilizado para preparar morteros y hormigones. El aditivo BNS no se adsorbe en las arenas, mientras que los PCE mostraron adsorción variable. Las curvas de adsorción revelaron que cuanto mayor es la finura de arena, menor la distribución del tamaño de partícula y mayor el contenido de arcilla mayor era adsorción/intercalación de aditivos PCE en las arenas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Borralleras Mas, P. (2012). Criterios de selecciÛn del aditivo s˙per plastificantes Proceedings HAC. 3er Congreso Iberoamericano sobre HormigÛn autocompactante, 2012. 55-66.

Spiratos, N.; PagÈ, M.; Mailvaganam, N.P.; Malhotra, V.M.; Jolicoeur, C. (2006) Superplasticizers for concrete fundamentals, technology and practice. Handy Chemicals, Canada.

GoBaszewski, J. (2012) Influence of cement properties on new generation superplasticizers performance. Construc. Build. Mater., 35, 586-596. https://doi.org/10.1016/j.conbuildmat.2012.04.070

Flatt, R.J.; Houst, Y.F. (2001) A simplified view on chemical effects perturbing the action of superplasticizers. Cem Concr Res., 31:1169-76. https://doi.org/10.1016/S0008-8846(01)00534-8

Yoshioka, K,; Tazawa, E.; Kawai, K.; Enohata, T. (2002) Adsorption characteristics of superplasticizers on cement component minerals. Cem. Concr. Res. 32, 1507-1513. https://doi.org/10.1016/S0008-8846(02)00782-2

Plank, J.; Zhimin, D.; Keller, H.; H^ssle, F.V.; Seidl, W. (2010) Fundamental mechanisms for polycarboxylate intercalation into C3A hydrate phases and the role of sulfate present in cement. Cem. Concr. Res. 40, 45-57. https://doi.org/10.1016/j.cemconres.2009.08.013

Alonso, M.M.; Palacios, M.; Puertas, F. (2013) Effect of Polycarboxylate "Ether Admixtures on Calcium Aluminate Cement Pastes. Part 1: Compatibility Studies. Ind. Eng. Chem. Res. 52, 17323-"17329.

Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Figi, R.; Gauckler, L. (2009) Interaction of polycarboxylate- based superplasticizers with cements containing different C3A amounts. Cem. Concr. Comp. 31[3], 153-162. https://doi.org/10.1016/j.cemconcomp.2009.01.005

Alonso, M.M, Puertas, F. (2015) Adsorption of PCE and PNS superplasticisers on cubic and orthorhombic C3A. Effect of sulfate. Construc. Build. Mat. 78, 324-332. https://doi.org/10.1016/j.conbuildmat.2014.12.050

Alonso, M.M.; Palacios, M.; Puertas, F. Compatibility between polycarboxylate based admixtures and blendedcement pastes. Cem. Concr. Comp. 35, 151-62.

Burgos-Montes, O.; Palacios, M.; Rivilla, P.; Puertas, F. (2012) Compatibility between superplasticizer admixtures and cements with mineral additions. Construc. Build. Mat. 31, 300-309. https://doi.org/10.1016/j.conbuildmat.2011.12.092

Puertas, F.; Santos, H.; Palacios, M.; MartÌnez-RamÌrez, S. (2005) Polycarboxylate superplasticizer admixtures: effect on hydration; microstructure and rheological behaviour in cement pastes. Adv. Cem. Res. 17, 77-89. https://doi.org/10.1680/adcr.2005.17.2.77

Stroh, J.; Schlegel, M.C.; Schmidt, W.; Nguyen Thi, Y.; Meng, B.; Emmerling, F. (2016) Time-resolved in situ investigation of Portland cement hydration influenced by chemical admixtures. Construc. Build. Mat. 106, 8-26. https://doi.org/10.1016/j.conbuildmat.2015.12.097

Zeghichi, L.; Benghazi, Z.; Baali, L. (2014) The effect of the kind of sands and additions on the mechanical behaviour of S.C.C. Physics Procedia. 55, 485-492. https://doi.org/10.1016/j.phpro.2014.07.070

Viacava, I.R.; Cavalaro, SHP.; Sensale, GR.; Aguado, A. (2012) Directrices de dosificaciÛn para HAC de baja y media resistencia. Proceedings HAC. 3er Congreso Iberoamericano sobre HormigÛn autocompactante. 35-44. PMCid:PMC3459279

Westerholm, M.; Lagerblad, B.; Silfwerbrand, J.; Forssberg, E. (2008) Influence of fine aggregate characteristics on the rheological properties of mortars. Cem. Concr. Comp. 30, 274-282. https://doi.org/10.1016/j.cemconcomp.2007.08.008

Fernández-Ledesma, E.; JimÈnez, J.R, Ayuso, J.; Corinaldesi.; V.; Iglesias-Godino.; F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414

Saiz-Martínez, P.; González-Cortina, M.; Fernández-Martínez, F. (2015) Characterization and influence of fine recycled aggregates on masonry mortars properties. Mater. Construcc. 65 [319] e058. https://doi.org/10.3989/mc.2015.06014

Fernandes, V.A.; Purnell, P.; Still, G.T.; Thomas, T.H. (2007) The effect of clay content in sands used for cementitious materials in developing countries. Cem. Concr. Res. 37, 751-758. https://doi.org/10.1016/j.cemconres.2006.10.016

Lei, L.; Plank, J. (2014) A study on the impact of different clay minerals on the dispersing force of conventional and modified vinyl ether based polycarboxylate superplasticizers. Cem. Concr. Res. 60, 1-10. https://doi.org/10.1016/j.cemconres.2014.02.009

Ait-Akbour, R.; Boustingorry, P.; Leroux, F.; Leising, F.; Taviot-GuÈho, C. (2015) Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+.; Mg2+ and Ca2+) and PCP molecular structure. J. Colloid. Interf. Sci. 437, 227-234. https://doi.org/10.1016/j.jcis.2014.09.027

Barton, C.D.; Karathanasis, A.D. (2002) Clay minerlas. Encyclopedia of Soil Science, 187-192.

Atarashi, D.; Sakai, E.; Obinata, R.; Daimon, M. (2004) Interactions between Superplasticizers and Clay Minerals. Cem. Sci. Concr. Technol. 58, 387-392.

Ng, G.B.S. (2013) Interactions of Polycarboxylate based Superplasticizers with Montmorillonite Clay in Portland Cement and with Calcium Aluminate Cement. PhD thesis Technische Universitat München.

Plank, J.; Sakai, E.; Miao, C.W.; Hong, J.X. (2015) Chemical admixtures. Chemistry.; applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 78, 81-99. https://doi.org/10.1016/j.cemconres.2015.05.016

Lei, L.; Plank, J. (2012) A concept for a polycarboxylate superplasticizer possesing enhanced clay tolerance. Cem. Concr. Res. 42, 1299-1306. https://doi.org/10.1016/j.cemconres.2012.07.001

Ng, S.; Plank, J. (2012) Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cem. Concr. Res. 42, 847-854. https://doi.org/10.1016/j.cemconres.2012.03.005

Giaccio, G.; Tobes, J.M.; Zerbino, R. (2012) Influencia de la fracción fina de la arena en el dise-o de HAC. Proceedings HAC. 3er Congreso Iberoamericano sobre Hormigón autocompactante. 99-108.

Roncero, J.; Gettu, R.; Gomes, P.C.C.; Agulló, L. (1999) Study of the flow behaviour of superplasticized cement paste systems and its influence on the properties of fresh concrete - High performance concrete. Research to practice Procc. ACi Chicago.; ACI SP-189. American Concrete

UNE 80230:1999 Methods of testing cement. Chemical analysis. Alternative methods.

Ruiz SantaQuiteria, C. (2013) Materias primas alternativas para el desarrollo de nuevos cementos: activación alcalina de vidrios silicoaluminosos. PhD thesis UAM.; Madrid. Spain.

Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. (2012) Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Const. Build. Mat. 28, 276-281. https://doi.org/10.1016/j.conbuildmat.2011.08.064

Van der Marel, H.W.; Beutelspacher, H. (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Ed. Elsevier.

Handbook of analytical techniques in concrete science and technology. (1999) Principles, Techniques, and Applications. Edited by V. S. Ramachandran and James J. Beaudoin. Institute for Research in Construction National Research Council Canada.

EN 1097-6:2001/A1:2006. (2001) Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption.

EN 480-8. (1997) Admixtures for concrete.; mortar and grout. test methods. Part 8: Determination of the conventional dry material content.

Houst, Y.F.; Bowen, P.; Perche, F.; Kauppi, A.; Borget, P.; Galmiche, L.; Le Meins, J.F.; Lafuma, F.; Flatt, R.; Schober, I.; Banfill, P.F.G.; Swift, D.S.; Myrvold, B.O.; Petersen, B.G.; Reknes, K. (2008) Design and Function of Novel Superplasticizers for More Durable High Performance Concrete (Superplast Project). Cem. Concr. Res. 38, 1197-1209. https://doi.org/10.1016/j.cemconres.2008.04.007

Perche, F. (2004) Adsorption de polycarboxylates et de lignosulfonates sur poudre modËle et ciments. PhD thesis EPFL.; Lausanne, Switzerland.

Alonso, M.M. (2011) Comportamiento y compatibilidad de cementos y aditivos superplastificantes basados en carboxilatos. Efecto de la naturaleza de los cementos y estructura de los aditivos. PhD thesis UAM.; Madrid, Spain.

UNE-EN 196-1: 2005. (2005) Methods of testing cement - Part 1: Determination of strength.

UNE-EN 1015-3:2000. (2000) Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table).

Ramachandran, V.S.; Malhotra, V.M.; Jolicoeur, C.; Spiratos, N. Superplasticizers: properties and applications in concrete (1998) CANMET Ed. Canada.

Zhang, Y.; Kong, X. (2015) Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem. Concr. Res. 69, 1-9. https://doi.org/10.1016/j.cemconres.2014.11.009

Vikan, H.; Jutnes, H.; Winnefeld, F.; Figi, R. (2007) Correlating cement characyteristics with rheology of paste. Cem. Concr. Res. 37, 1502-15 11.

Cuihua Tanga; Jianxi Zhua; Zhaohui Li; Runliang Zhua; Qing Zhoua; Jingming Wei; Hongping Hea; Qi Tao. (2015) Surface chemistry and reactivity of SiO2 polymorphs: A comparative study on -quartz and cristobalite. Applied Surface Science, 55, 1161-1167.; https://doi.org/10.1016/j.apsusc.2015.07.214

Hommer, H. (2009) Interaction of polycarboxylate ether with silica fume. J. Europ. Cer. Soc. 29, 1847-1853. https://doi.org/10.1016/j.jeurceramsoc.2008.12.017

Jong-Yeop, K.; Sansalone, J.J. (2008) Zeta potential of clay-size particles in urban rainfall runoff during hydrologic transport. Journal of Hydrology, 356, 163-173. https://doi.org/10.1016/j.jhydrol.2008.04.006

Schröfl, Ch.; Gruber, M.; Plank, J. (2012) Preferential Adsorption of Polycarboxylate Superplasticizers on Cement and Silica Fume in Ultra-High Performance Concrete (UHPC). Cem. Concr. Res., 42, 1401-1408. https://doi.org/10.1016/j.cemconres.2012.08.013

Publicado

2017-06-30

Cómo citar

Alonso, M. M., Martínez-Gaitero, R., Gismera-Diez, S., & Puertas, F. (2017). Adsorción de aditivos PCE y BNS en arenas con diferente composición y distribución de tamaño de partículas. Materiales De Construcción, 67(326), e121. https://doi.org/10.3989/mc.2017.08116

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>