Evaluación del subbalasto bituminoso a partir de mezclas a baja temperatura, como alternativa para la construcción de infraestructuras ferroviarias más sostenibles

Autores/as

  • L. Pirozzolo Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-1722-4046
  • M. Sol-Sánchez Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-3756-7556
  • F. Moreno-Navarro Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0001-6758-8695
  • G. Martínez-Montes Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-0677-8318
  • M. C. Rubio-Gámez Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0002-1874-5129

DOI:

https://doi.org/10.3989/mc.2017.04816

Palabras clave:

Caliza, Temperatura, Deformación, Propiedades mecánicas

Resumen


Las mezclas bituminosas en caliente en infraestructuras ferroviarias son una alternativa cada vez más extendida en vías de altas prestaciones, para mejorar la capacidad portante de la vía y el grado de protección del resto de la subestructura. Sin embargo, el sub-balasto bituminoso presenta una serie de limitaciones asociadas al posible incremento de costes de construcción y a problemas medioambientales derivados de la utilización de mezclas bituminosas en caliente fabricadas a 160°C. Este trabajo, tiene como objetivo estudiar la posibilidad de utilizar WMA fabricado a temperaturas inferiores, como sub-balasto bituminoso con el fin de ahorrar energía, reducir las emisiones y disminuir los costes constructivos de esta capa. Así, este estudio se centra en la comparación entre el comportamiento mecánico de mezclas bituminosas semicalientes y calientes como sub-balasto, bajo diferentes condiciones de carga. Los resultados muestran que el sub-balasto semicaliente presenta una respuesta mecánica comparable a las soluciones convencionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Selig, E.T.; Waters, J.M. (1994) Track technology and substructure management Thomas Telford, London.

Teixeira, P.F.; López-Pita, A.; Casas-Esplugas, C.; Bachiller, A.; and Robusté, F. (2006) Improvements in highspeed ballasted track design: Benefits of bituminous subballast layers. Transp. Res. Rec., 1943, 43–49. https://doi.org/10.3141/1943-06

Teixeira, P.F.; Ferreira, P.A.; López Pita, A.; Casas, C.; Bachiller, A. (2009) The use of bituminous sub-ballast on future high-speed lines in Spain: Structural design and economical impact. IJR International Journal of Railway, 2, 1–7.

Rose, J.G.; Teixeira, P.F.; Veit, P. (2011) International Design Practices, Applications, and Performances of Asphalt /Bituminous Railway Trackbeds". GEORAIL, Paris, France.

Asphalt Institute (1998) HMA Trackbeds–Hot Mix Asphalt for Quality Railroad and Transit Trackbeds, Informational Series 137, 10 p.

Fang, M.; Rose, J.G.; West, R.C.; Qiu, Y.; (2011) Ai C. Comparative analysis on dynamic behavior of two HMA railway substructures. J Transp Res Board; 19(1): 26–34.

Sol-Sánchez, M.; Pirozzolo, L.; Moreno-Navarro, F.; Rubio-Gámez, M.C. (2015) Advanced characterisation of bituminous sub-ballast for its application in railway tracks: The influence of temperature. Construc. Build. Mat. 101 338–346. https://doi.org/10.1016/j.conbuildmat.2015.10.102

CENIT (2005) Estudio sobre la viabilidad de incorporar capas de sub-balasto con material bituminoso en las líneas de alta velocidad en Espa-a-Fase 2. 252 pp. Conf. Report.

Rose, J.G.; Bryson, L.S. (2009) Hot mix asphalt railway trackbeds: trackbed materials, performance evaluations, and significant implications. International Conference on Perpetual Pavements, Columbus, Ohio, USA.

Rose, J.G.; Teixeira, P.F. (2010) Ridgway NE. Utilization of asphalt/bituminous layers and coatings in railway trackbeds – a compendium of international applications. ASME Joint Rail Conf; 1:239–56. PMid:20065298

Jiménez del Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. (2016) Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc. 66 [323], e090. https://doi.org/10.3989/mc.2016.08815

López-López, E.; Vega-Zamanillo, A.; Calzada-Pérez, M.A.; Taborga-Sedano, M.A. (2015) Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures. Mater. Construcc. 65 [318], e051. https://doi.org/10.3989/mc.2015.01614

Alonso, A.; Tejeda, E.; Moreno, F.; Rubio, M., & Medel, E. (2013) A comparative study of natural zeolite and synthetic zeolite as an additive in warm asphalt mixes. Mater. Construcc, 63(310): 195–217.

Rubio-Gámez, M.C.; Martínez, G.; Baena, L.; Moreno, F. (2012) Warm mix asphalt: an overview. J. Clean. Produc. 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053

You, Z.; Goh, S.W. (2008) Laboratory evaluation of warm mix asphalt: a preliminary study. International Journal of Pavement Research and Technology 1 (1), 34e40.

Zaumanis, M. (2010) Warm mix asphalt investigation. Master of science thesis. Kgs.Lyngby: Technical University of Denmark in cooperation with the Danish Road Institute, Department of Civil Engineering.

Olard, F.; Noan, C. (2008) Low energy asphalts. Routes roads 336/337. PIARC (World Road Association). p. 131–45.

EAPA. (2010) The use of warm mix asphalt – EAPA position paper. Brussels: European Asphalt Pavement Association.

Al-Rawashdeh, A.S. (2008) Performance Assessment of Warm Mix Asphalt (WMA) Pavements. PhD Thesis, Rus College of Engineering and Technology, Ohio University, Athens, USA.

Chowdhury, A.; Button, J.W. (2008) A Review of Warm Mix Asphalt. Texas Transportation Institute e Technical Report 473700-00080-1 College Station, USA.

Rohith, N.; Ranjitha, J. (2013) A Study On Marshall Stability Properties Of Warm Mix Asphalt Using Zycotherm A Chemical Additive. International Journal of Engineering Research & Technology (IJERT). ISSN: 2278–0181. Vol. 2 Issue 7, July – 2013.

Pérez-Lepe, A.; Martínez-Boza, F.J.; Gallegos, C.; González, O.; Mu-oz, M.E.; Santamaría A. (2003) Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 82, 1339–1348. https://doi.org/10.1016/S0016-2361(03)00065-6

Hafeez, I.; Hussain, J.; Riaz, K.; Khitab, A.; Hussain, S.; Zaidi, B.; Farooqi, U.; Hayat, A.; Ahmed, I.; Asif, A. (2013) Influence of time and temperature on asphalt rheological properties. Life Sci. J., 10, 894–898. http://www.lifesciencesite.com/lsj/life1012s/146_22330life1012s_894_898.pdf.

Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2015) The effect of polymer modified binders on the long-term performance of bituminous mixtures: the influence of temperature. Mat. Des. 78, pp. 5–11. https://doi.org/10.1016/j.matdes.2015.04.018

Rose, J.G.; Li, D.; Walker, L.A. (2002) Tests and evaluations of in-service asphalt trackbeds. American Railway Engineering and Maintenance-of-Way Association, Annual Conference & Exposition, Washington, D.C., USA.

Minhoto, M.J.C.; Pais, J.C.; Pereira, P.A.A. (2008) The temperature effect on the reflective cracking of asphalt overlays. Mat. Pav. Des. 9, 615-632. https://doi.org/10.1080/14680629.2008.9690141

Parson, R.; Rahman, A.; Han, J. (2012) Properties of fouled railroad ballast (Phase 1). Mid-America Transportation Center. Final Report 25-1121-0001-465.

Hurley, G.; Prowell, B. (2006) Evaluation of Potential Processes for Use in Warm Mix Asphalt. Alabama : National Center for Asphalt Technology, Auburn University. NCAT report Nr.06-02.

Sanchez-Alonso, E.; Vega-Zamanillo, A.; Castro-Fresno, D.; Del Rio-Prat, M. (2011) Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr Build Mater; 25:2304–11. https://doi.org/10.1016/j.conbuildmat.2010.11.024

Bennert, T.; Maher, A.; Sauber, R. (2011) Influence of production temperature and aggregate moisture content on the performance of warm mix asphalt (WMA). In: Nineteenth annual meeting of the transportation research board, Washington, DC, USA.

Rose, J.G. (2014) Maintaining adequate trackbed structural support- An important railway infrastructure issue. Seminar at University of Illinois at Urbana-Champaign, USA.

Spanish Standard for Subballast, PF-7 (2006) Pliego de Prescripciones Técnicas Generales de Materiales Ferroviarios PF-7, Subbalasto. Servicio de publicaciones del Ministerio de Fomento, Madrid.

Policicchio, F. (2008) Lineamenti di Infrastrutture Ferroviarie. Firenze University Press.

Publicado

2017-09-30

Cómo citar

Pirozzolo, L., Sol-Sánchez, M., Moreno-Navarro, F., Martínez-Montes, G., & Rubio-Gámez, M. C. (2017). Evaluación del subbalasto bituminoso a partir de mezclas a baja temperatura, como alternativa para la construcción de infraestructuras ferroviarias más sostenibles. Materiales De Construcción, 67(327), e128. https://doi.org/10.3989/mc.2017.04816

Número

Sección

Artículos

Artículos más leídos del mismo autor/a