Prestaciones del cemento portland ultrafino

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.03317

Palabras clave:

Cemento Portland, Humo de sílice, Resistencia a compresión, Porosimetría de Hg, Análisis térmico

Resumen


La densidad de empaquetamiento del producto final se puede mejorar cuando se mezclan varios conglomerantes y adiciones de diferente finura. En este trabajo se estudiaron varias mezclas de cemento ultrafino y humo de sílice para optimizar las propiedades de los materiales de base cemento. Esta investigación se realizó con morteros fabricados con dos tipos de cemento (cemento Portland ultrafino y cemento Portland común) y dos tipos de humo de sílice con diferentes tamaños de partícula. Se seleccionaron dos porcentajes de sustitución de cemento Portland por humo de sílice (4% y 10%) que se mezclaron mecánicamente. Los resultados revelaron que la mezcla del humo de sílice más fino con el cemento grueso mejora las propiedades mecánicas y el refinamiento de la distribución del tamaño de poro a edades avanzadas. Esta mejora de resistencias y reducción del tamaño de poro era menor en el caso del cemento ultrafino con el humo de sílice.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sanjuán, M.A.; Menéndez, E.; Argiz ,C.; Moragues, A. (2016) Coal bottom ash research program focused to evaluate a potential portland cement constituent. In: Proceedings of II International Conference on Concrete Sustainability. Madrid, Spain, June, 532-543.

Bentz, D.P.; Haecker, C.J. (1999) An argument for using coarse cements in high performance concretes. Cem. Concr. Res. 29[4], 615–618. https://doi.org/10.1016/S0008-8846(98)00201-4

Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Moragues, A. (2015) Effect of silica fume fineness on the improvement of Portland cement strength performance. Constr. Build. Mater. 96, 55–64. https://doi.org/10.1016/j.conbuildmat.2015.07.092

Kuhlmann, K.; Ellerbrock, H.G.; Sprung, S. (1985) Particle-size distribution and properties of cement. Part I: Strength of portland cement. ZKG International Cement-Lime-Gypsum. Edition B. 38[4], 169–178.

Thomas, J.J.; Jennings, H.M.; Chen, J.J. (2009) Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C. 113 [11], 4327–4334. https://doi.org/10.1021/jp809811w

Goldman, A.; Bentur, A. (1993) The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 23 [4], 962–972. https://doi.org/10.1016/0008-8846(93)90050-J

Feng, N.Q.; Shi, Y.X.; Hao, T.Y. (2000) Influence of ultrafine powder on the fluidity and strength of cement paste. Adv. Cem. Res. 12 [3], 89–95. https://doi.org/10.1680/adcr.2000.12.3.89

Roux, N.; Andrade, C.; Sanjuán, M. (1996) Experimental Study of Durability of Reactive Powder Concretes. J. Mater. Civ. Eng. 8 [1], 1–6. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(1)

Fernández, A.; Alonso, M.C.; García –Calvo, J.L.; Lothenbach, B. (2016) Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater. Construcc. 66 [324], October- December e097. https://doi.org/10.3989/mc.2016.10815

EN 197-1:2011 Cement - Part 1: Composition. specifications and conformity criteria for common cements.

EN 196-1:2016 Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization (CEN). Brussels.

EN 196-2:2013 Method of testing cement. Chemical analysis of cement.

UNE 83988-1:2008 Concrete durability. Test methods. Determination of the electrical resistivity. Part 1: Direct test (reference method). AENOR. Madrid.

Tobón, J.I.; Payá, J.; Borrachero, M.V.; Soriano, L.; Restrepo, O.J. (2012) Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J. Therm. Anal. Calorim.107 [1], 233–239. https://doi.org/10.1007/s10973-010-0997-0

Kong, D.Y.; Du, X.F.; Wei, S.; Zhang, H.; Yang, Y.; Shah, S.P. (2012) Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715. https://doi.org/10.1016/j.conbuildmat.2012.08.006

Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E.F. ((2014) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydratation. Mater. Construcc. 64 [315], July-September e25. https://doi.org/10.3989/mc.2014.04813

Poon, C.S.; Kou, S.C.; Lam, L. (2006) Compressive strength chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 20 [10], 858–865. https://doi.org/10.1016/j.conbuildmat.2005.07.001

Elahi, A.; Basheer, P.A.M.; Nanukuttan, S.V.; Khan, Q.U.Z. (2010) Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24 [3], 292–299. https://doi.org/10.1016/j.conbuildmat.2009.08.045

Mazloom, M.; Ramezanianpour, A.A.; Brooks, J.J. (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos. 26 [4], 347–357. https://doi.org/10.1016/S0958-9465(03)00017-9

Senhadji Y, Escadeillas G, Mouli M, Khelafi H, Benosman. (2014) Influence of natural pozzolan silica fume and limestone fine on strength acid resistance and microstructure of mortar. Powder Technol. 254, 314–323. https://doi.org/10.1016/j.powtec.2014.01.046

Wang, A.Q.; Zhang, C.Z.; Zhang, N.S. (1999) The theoretic analysis of the influence of the particle-size distribution of cement system on the property of cement. Cem. Concr. Res. 29 [11], 1721–1726. https://doi.org/10.1016/S0008-8846(99)00148-9

Mahmoud, S.; Reyes, E.; Moragues, A. (2010) Evolution of microstructure and mechanical behavior of concretes utilized in marine environments. Mater. Des. 31[7], 3412-3418. https://doi.org/10.1016/j.matdes.2010.01.045

Huang, C.Y.; Feldman, R.F. (1985) Hydration reactions in portland cement-silica fume blends. Cem. Concr. Res. 15[4], 585–592. https://doi.org/10.1016/0008-8846(85)90056-0

Langan, B.W.; Weng. K.; Ward, M.A. (2002) Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem. Concr. Res. 32[7], 1045–51. https://doi.org/10.1016/S0008-8846(02)00742-1

Publicado

2018-06-30

Cómo citar

Argiz, C., Reyes, E., & Moragues, A. (2018). Prestaciones del cemento portland ultrafino. Materiales De Construcción, 68(330), e157. https://doi.org/10.3989/mc.2018.03317

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>