Study of the brickwork masonry cracking with a cohesive fracture model


  • E. Reyes Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Madrid
  • M. J. Casati Universidad Politécnica de Madrid, E.U.I.T. Aeronáuticos, Madrid
  • J. C. Gálvez Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Madrid



brick, fracture, tensile strength, shear strength, numerical modeling


This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1) calculation of the crack path with a linear elastic fracture model, 2) after the crack path is obtained, an interface finite element (using the cohesive fracture model) is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.


Download data is not yet available.


(1) Reyes E., Casati, M.J., Gálvez, J.C.: “Estudio experimental de la fisuración de la fábrica de ladrillo bajo solicitaciones de tracción y cortante en modelos reducidos”, Mater. Constucc., Vol. 58 (2008), pp. 69-83.

(2) Steward, M.G., Lawrence, S.: “Structural reliability of masonry walls in flexure”, Masonry Int. Vol.15 (2002), pp. 48-52.

(3) Lorenço, P.B.: Computational strategies for masonry structures, Ph.D. Thesis, p. 211, Delft, The Netherlans, (1996).

(4) Lorenço, P.B., Rots, J., Blaauwendraad, J.: “Continuum model for masonry: parameter estimation and validation”, ASCE J. Struct. Eng., Vol.124 (1986), pp. 642-652.

(5) Jukes, P., Riddintong, J.R.: “The failure of brick triplet test specimens”, Masonry Int., Vol. 15, nº1 (2001), pp. 30-33.

(6) Bosiljkov, V., Zarnic, R., Kralj, V., Pande, G.N.: “Experimentally-based computational modelling of masonry”, Computer Methods in Structural Masonry-4 (1998), pp. 103-110, E&FN Spon, New York.

(7) Lourenço, P.B., Ramos, L.F.: “Characterization of cyclic behaviour of dry masonry joints, ASCE Journal of Structural Engineering, Vol. 130, nº 5 (2004), pp. 779 - 786.

(8) Reyes, E.: Rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante, Tesis Doctoral, Universidad de Castilla La Mancha, (2004).

(9) Van der Pluijm, R.: Out of plane bending of masonry behaviour and strength, Ph.D. Thesis, 259 pp., Delft, The Netherlands, (1999).

(10) Guinea, G.V., Hussein, G., Elices, M., Planas, J.: “Micromechanical modelling of brick-masonry fracture”, Cement and Concrete Research, Vol. 30 (2000), pp. 731 -737. doi:10.1016/S0008-8846(00)00228-3

(11) Reyes, E., Gálvez, J.C., Casati, M.J., Cendón, D.C., Sancho, J.M., Planas, J.: “An embedded cohesive crack model for finite element analysis of brickwork masonry fracture”, Engineering Fracture Mechanics, Vol. 76 (2009), pp. 1930-1944. doi:10.1016/j.engfracmech.2009.05.002

(12) Reyes, E., Casati, M.J., Gálvez, J.C.: “Cohesive crack model for mixed mode fracture of brick masonry”, Int. Journal of Fracture, Vol. 151 (2008), pp. 29-55. doi:10.1007/s10704-008-9243-1

(13) Fathy, A.M., Planas, J., Sancho, J.M.: “A numerical study of masonry cracks”, Eng. Failure Analysis, Vol. 16 (2009), pp. 675-689. doi:10.1016/j.engfailanal.2008.02.011

(14) Rots, J.G.: “Numerical simulation of cracking in structural masonry”, HERON, Vol. 36 (1991), pp.49-63.

(15) Dhanasekar, M., Kleeman, P., Page, A.W.: “Biaxial stress-strain relations for brick masonry”, J. Struct. Eng., Vol. 3(5) (1985), pp.1085-1100. doi:10.1061/(ASCE)0733-9445(1985)111:5(1085)

(16) Page, A.W.: “The biaxial compressive strength of brick masonry”, Proc. Inst. Civ. Eng., Vol. 71(2) (1981), pp. 893-906. doi:10.1680/iicep.1981.1825

(17) Lourenço, P.B., Rots, J.: “On the use of micro-models for the analysis of masonry shear walls”, Computer methods in structural masonry-2, Swansea (1993), pp 14-26.

(18) Salerno, G., Bilotta, A., Porco, F.: “A finite element with micro-scale effects for the linear analysis of masonry brickwork”, Comput. Methods Appl. Mech. Eng., Vol. 190 (2001), pp. 4365-4378. doi:10.1016/S0045-7825(01)00165-7

(19) Anthoine, A.: “Derivation of the in-plane elastic characteristics of masonry through homo-genization theory”, Int. J. Solids. Struct., Vol. 32(2) (1995), pp. 137-163. doi:10.1016/0020-7683(94)00140-R

(20) Zucchini, A., Lourenço P.B.: “A micro-mechanical model for the homogenization of masonry”, Int. J. Solids Struct., Vol. 39 (2002), pp. 3233-3255. doi:10.1016/S0020-7683(02)00230-5

(21) Massart, T.J., Peerlings, R.H.J., Geers, M.G.D., Gottcheiner, S.: “Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects”, Eng. Fract. Mech., Vol. 72 (2005), pp. 1238-1253. doi:10.1016/j.engfracmech.2004.09.007

(22) Pietruszczak, S., Ushaksaraei, R.: “Description of inelastic behavior of structural masonry”, Int. J. Solids. Struct., Vol. 40 (2003), pp. 4003-4019. doi:10.1016/S0020-7683(03)00174-4

(23) Gálvez, J.C., Cervenka, J., Saouma, V., Cendón, D.A.: “A discrete crack approach to normal/shear cracking of concrete”, Cement. Concr. Res., Vol. 32 (2002), pp. 1567-1585. doi:10.1016/S0008-8846(02)00825-6

(24) Gálvez, J.C., Cendón, D.A., Planas, J.: “Influence of shear parameters on mixed-mode fracture of concrete”, Int. J. Fract., Vol.118 (2002), pp.163-189. doi:10.1023/A:1022883132117

(25) Hillerborg, A., Modeer, M., Petersson, P.: “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”, Cement. Concr. Res., Vol. 6 (1976), pp. 773-782. doi:10.1016/0008-8846(76)90007-7

(26) Sancho, J.M., Planas, J., Gálvez, J.C., Reyes, E., Cendón, D.A.: “An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete”, Fatigue Fract. Engng. Mater. Struct., Vol. 29 (2006), pp. 1056-1065. doi:10.1111/j.1460-2695.2006.01076.x

(27) Gálvez, J.C., Elices, M., Guinea, G.V., Planas, J.: “Crack trajectories under mixed mode and non-proportional loading”, Int. J. Fract., Vol 81 (1996), pp. 171-193. doi:10.1007/BF00033181

(28) Gálvez, J.C., Elices, M., Guinea, G.V., Planas, J.: “Mixed mode fracture under proportional and non proportional loading”, Int. J. Fract., Vol. 94 (1998), pp. 267-284. doi:10.1023/A:1007578814070

(29) Wawryzynek, P., Ingraffea, A.: FRANC2D: a two-dimensional crack propagation simulator, version 2.7. (1994).

(30) Carol, I., Prat, P., López, C.M.: “Normal/shear cracking model: application to discrete crack analysis”, J. Eng. Mech., Vol. 123 (1997), pp. 765-773. doi:10.1061/(ASCE)0733-9399(1997)123:8(765)

(31) RILEM 50-FMC Committee Fracture Mechanics of Concrete: “Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams”, Mater.& Construct., Vol. 18 (1986), pp. 285-290.




How to Cite

Reyes, E., Casati, M. J., & Gálvez, J. C. (2011). Study of the brickwork masonry cracking with a cohesive fracture model. Materiales De Construcción, 61(303), 431–449.



Research Articles

Most read articles by the same author(s)

1 2 > >>