Permeabilidad de vapor agua isotérmica de hormigones con diferentes adiciones minerales
DOI:
https://doi.org/10.3989/mc.2018.02517Palabras clave:
Permeabilidad, Durabilidad, Escoria granulada de alto horno, Caliza, PuzolanaResumen
La permeabilidad al vapor de agua (PVA) es un parámetro fundamental para el acondicionamiento térmico sustentable de edificios. El estudio de PVA en hormigón con AM permite el diseño de estructuras con durabilidad y sustentabilidad mejoradas. A nuestro conocimiento, hay insuficiente información experimental en la literatura sobre PVA en hormigón con AM. Se hicieron ensayos de PVA en hormigones con escoria granulada de alto horno (EGAH) y polvo calizo (PC) en reemplazos parciales de cemento normal, y de hormigones con cemento puzolánico. Resultados de tres gradientes de humedad muestran que EGHA induce a la mayor reducción de PVA, seguida para por la puzolana natural. PC muestra un efecto de dilución del ligante, el cual pudo ser compensado por la EGHA en las mezclas ternarias. De la comparación entre PVA y velocidad de succión capilar, la influencia de las AM en la conectividad de los poros más pequeños es evaluada.
Descargas
Citas
Bazant, Z.P.; Najjar, L.J. (1972) Nonlinear water diffusion in nonsaturated concrete. Mater. Struct. 5 [25], 3-20.
Mehta, P. K. (1986). Concrete: structure, properties and materials. Prentice Hall, New Jersey, USA. p. 106.
ACI Committee 233 Report. (2003) GGBFS cement in concrete and mortar. ACI 233R-03. American Concrete Institute, Farmington Hills, Mich.
Bijen, J. (1996). Benefits of slag and fly ash. Constr. Build. Mater. 10 [5], 309-314. https://doi.org/10.1016/0950-0618(95)00014-3
Bouikni, A.; Swamy, R.; Bali, A. (2009) Durability properties of concrete containing 50% and 65% slag. Constr. Build Mater. 23, 2836–2845. https://doi.org/10.1016/j.conbuildmat.2009.02.040
Aïtcin, P., (2008). Binders for Durable and Sustainable Concrete. London, Taylor & Francis.
Özbay, E.; Erdemir, M.; Durmus, H. (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties – A review. Constr. Build. Mater. 105, 423– 434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
Yeau, K.Y.; Kim, E.K. (2005) An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cem. Concr. Res. 35 [7], 1391–1399. https://doi.org/10.1016/j.cemconres.2004.11.010
Matschei, T.; Lothenbach, B.; Glasser, F.P. (2007) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem. Concr. Res. 37, 1379-1410. https://doi.org/10.1016/j.cemconres.2007.06.002
Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E.F. (2003) Limestone filler cement in low w/c concrete: A rational use of energy. Cem. Concr. Res. 33, 865–871. https://doi.org/10.1016/S0008-8846(02)01087-6
Bonavetti, V.; Donza, H.; Rahhal, V.; Irassar, E. (2000) Influence of initial curing on the properties of concrete containing limestone blended cement. Cem. Concr. Res. 30, 703-708. https://doi.org/10.1016/S0008-8846(00)00217-9
Menéndez, G. (2002) Memorias de las Jornadas Tecnológicas sobre Corrosión de Armaduras en Estructuras de Hormigón [Proceedings of the technological meetings about corrosion in reinforced concrete structures], 96-109 (in Spanish).
Mounanga, P.; Muhammad, K.; El Hachem, R.; Loukili, A. (2011) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Mater. Struct. 44, 437–453. https://doi.org/10.1617/s11527-010-9637-1
Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. (2008) Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002
Matschei, T.; Lothenbach, B.; Glasser, F.P. (2007) The role of calcium carbonate in cement hydration. Cem. Concr. Res. 37, 551–558. https://doi.org/10.1016/j.cemconres.2006.10.013
Bonavetti, V.; Irassar, E.F.; Menéndez, G.; Carrasco, M.F.; Donza, H. (2005) Proceedings fib Simposium Structural Concrete and Time (fib, La Plata, Argentina), 1, 201-208.
Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2003) Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Comp. 25, 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7
Villagrán Zaccardi, Y.A. (2009) Ingreso de cloruro en hormigones con CPC - Influencias del tiempo y de la capacidad de fijación, [Chloride ingress in concrete with ternary cements – Influence of time and fixation capacity] (UNCPBA, Olavarría), 128 p (in Spanish).
Villagrán Zaccardi, Y.A.; Matiasich, C. (2004) Capacidad de fijación y adsorción de cloruros en cementos [Chloride binding and adsorption capacity in cements], Cienc. Tecnol. Hormig., 11, 59-72.
Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2007) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration. Mater. Construcc. 285, 31-43.
Villagrán Zaccardi, Y.A.; Di Maio, A.A.; Romagnoli, R. (2012) The effect of slag and limestone filler on resistivity, sorptivity, and permeability of concrete with low paste content. MRS Proceedings, Vol. 1488,
Saeidpour, M.;Wadsö, L. (2016) Moisture diffusion coefficients of mortars in absorption and desorption. Cem. Concr. Res. 83, 179–187. https://doi.org/10.1016/j.cemconres.2016.02.003
Chari, M.; Shekarchi, M.; Sobhani, J.; Chari, M. (2016) The effect of temperature on the moisture transfer coefficient of cement-based mortars: An experimental investigation. Constr. Build. Mater. 102, 306-307. https://doi.org/10.1016/j.conbuildmat.2015.10.065
Snoeck, D.; Velasco, L.F.; Mignon, A.; Van Vlierberghe, S.; Dubruel P.; Lodewyckx, P.; De Belie N. (2014). The influence of different drying techniques on the water sorption properties of cement-based materials. Cem. Concr. Res. 64, 54–62. https://doi.org/10.1016/j.cemconres.2014.06.009
Zhang, J.; Scherer, G.W. (2011) Comparison of methods for arresting hydration of cement, Cem. Concr. Res. 41, 1024– 1036. https://doi.org/10.1016/j.cemconres.2011.06.003
Kearsley, E.P.; Wainwright J. (2001) Porosity and permeability of foamed concrete, Cem. Concr. Res. 31, 805–812 . https://doi.org/10.1016/S0008-8846(01)00490-2
Vejmelková, E.; Keppert, M.; Grzeszczyk, S.; Skalin, B.; Cerny, R. (2011) Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr. Build. Mater. 25, 1325–1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012
M?ahoncáková, E.; Pavlíková, M.; Grzeszczyk, S.; Rovnaníková, P.; Cerny, R. (2008) Hydric, thermal and mechanical properties of self-compacting concrete containing different fillers. Constr. Build. Mater. 22, 1594– 1600.
ASTM C127-07 (2007), Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate, 6 p.
ASTM C128-15 (2015), Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, 6 p.
ASTM C117-13 (2013), Standard test method for materials finer than 75-?m (No. 200) sieve in mineral aggregates by washing, 3 p.
ASTM C136/C136M-14 (2014), Standard test method for sieve analysis of fine and coarse aggregates, 5 p.
ASTM C1017/C1017M-13e (2013), Standard specification for chemical admixtures for use in producing flowing concrete, 9 p.
ASTM C204-16 (2016), Standard test methods for fineness of hydraulic cement by air-permeability apparatus, 10 p.
ASTM C786/C786M-10(2016), Standard test method for fineness of hydraulic cement and raw materials by the 300- ?m (No. 50), 150-?m (No. 100), and 75-?m (No. 200) sieves by wet methods, 4 p.
ASTM C349-14 (2014), Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure), 4 p.
ASTM C188-15 (2015), Standard test method for density of hydraulic cement, 3 p.
ASTM C989/C989M-14 (2014), Standard specification for slag cement for use in concrete and mortars, 8 p.
ASTM C114-15 (2015), Standard test methods for chemical analysis of hydraulic cement, 32 p.
ASTM C231/C231M-14 (2014), Standard test method for air content of freshly mixed concrete by the pressure method, 9 p.
ASTM C138/C138M-16a (2016), Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete, 6 p.
ASTM C143/C143M-15a (2015), Standard test method for slump of hydraulic-cement concrete, 4 p.
ASTM C232/C232M-14 (2014), Standard test method for bleeding of concrete, 3 p.
ASTM C 642 –13 (2013), Standard test method for density, absorption, and voids in hardened concrete, 3 p.
ASTM C39/C39M-16b (2016), Standard test method for compressive strength of cylindrical concrete specimens, 7 p.
IRAM 1871 (2004) Hormigón. Método para la determinación de la capacidad y velocidad de succión capilar de agua para hormigón endurecido. [Argentinian Standard. Concrete. Test method for the determination of the water capillary sorption capacity and rate of hardened concrete].
Goossens, E.L.J.; van der Zanden, A.J.J.; van der Spoel, W.H. (2004) The measurement of the moisture transfer properties of paint films using the cup method. Prog. Org. Coat. 49 [3], 270–274. https://doi.org/10.1016/j.porgcoat.2003.10.008
Feng, C.; Meng, Q.; Feng, Y.; Janssen, H. (2015) Influence of pre-conditioning methods on the cup test results. Ener. Proc. 78, 1383–1388. https://doi.org/10.1016/j.egypro.2015.11.158
ISO 12572:2001 (2001) Hygrothermal performance of building materials and products - Determination of water vapour transmission properties. International Organization for Standardization.
ASTM E96/E96M-16 (2016), Standard test methods for water vapour transmission of materials, 14 p.
Joy, F.; Wilson, A. (1963) Standardization of the dish method for measuring water vapour transmission. Research paper n° 279 of the Division of Building Research.
Hu, J. (2004). Porosity of concrete: morphological study of model concrete. Doctoral thesis, TU Delft. uuid:7ec84b76-d120-48f7-96a4-b68de2463154.
Nguyen, H. (2011) Water and heat transfer in cement based materials. Doctoral thesis, University of Tromso. http://hdl.handle.net/10037/3443.
Nilsson, L-O. (1980). Hygroscopic moisture in concrete, drying measurements & related material properties. Division of building materials, Lund Institute of Technology, Sweden.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.