Valorización de la ceniza de bagazo de azúcar (SCBA) con alto contenido de cuarzo como material puzolánico en mezclas de cemento Portland

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.00617

Palabras clave:

Adición activa, Resistencia a la Compresión, Mortero, Puzolana, Análisis térmico

Resumen


La producción de cemento Portland (OPC) presenta una elevada emisión de CO2. Con el objeto de reducir el consumo de OPC, se están evaluando algunas alternativas, y el uso de materiales puzolánicos es una de ellas. En este trabajo se presenta el estudio de la reactividad de la ceniza de bagazo de caña de azúcar (SCBA) como material puzolánico, un residuo procedente de la industria de la caña de azúcar. Al objeto de evaluar la reactividad de SCBA, se realizaron pastas con cal hidratada y con OPC, las cuales fueron caracterizadas microestructuralmente. Estos estudios mostraron que SCBA presenta una cierta característica puzolánica. Se llevaron a cabo estudios en morteros en los que OPC se sustituyó por SCBA en el intervalo de 10-30%. La sustitución en el intervalo 15-20% produjo el mejor comportamiento en términos de resistencia a compresión. Finalmente, se puede concluir que esta ceniza puede ser valorizada a pesar de su baja reactividad puzolánica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

World cement production. CEMBUREAU – The European Cement Association Website; https://cembureau.eu/media/ 1503/2015activityreport_cembureau.pdf

Guo, X.; Shi, H.; Dick, W.A. (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32, 142–7. https://doi.org/10.1016/j.cemconcomp.2009.11.003

Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials. 3rd ed. New York: McGraw- Hill, (2006).

Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. (2016) Structural performance of reinforced geopolymer concrete members: A review, Constr. Build. Mater. 120, 251-264. https://doi.org/10.1016/j.conbuildmat.2016.05.088

Sharp, J.H.; Gartner, E.M.; Macphee, D.E. (2010) Novel cement system (sustainability). Session 2 of the Fred Glasser cement science symposium. Adv. Cem. Res. 22(4), 195–202. https://doi.org/10.1680/adcr.2010.22.4.195

BS EN 197-1. Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation; (2011).

Siddique, R.; Khan, M.I. Supplementary Cementing Materials. 1st ed. Berlin: Springer, (2011). https://doi.org/10.1007/978-3-642-17866-5

Siddique, R. Waste Material and By-Products in Concrete. 1st ed. Berlin: Springer, (2008).

Küçükyıldırım, E.; Uzal, B. (2014) Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements. Constr. Build. Mater. 73, 229–34. https://doi.org/10.1016/j.conbuildmat.2014.09.081

Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. (2014) New method to assessthe pozzolanic reactivity of mineral admixtures by means pH and electrical conductivity measurementsin lime:pozzolan suspensions. Mater. Construc. 64 [316], e032. https://doi.org/10.3989/mc.2014.00914

Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-62. https://doi.org/10.1016/j.matdes.2011.11.043

Lee, C.L.; Huang, R.; Lin, W.T.; Weng, T.L. (2012) Establishment of the durability indices for cement-based composite containing supplementary cementitious materials. Mater. Des. 37, 28-39. https://doi.org/10.1016/j.matdes.2011.12.030

Sinsiri, T.; Kroenhong, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2012) Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424-33. https://doi.org/10.1016/j.matdes.2012.06.030

Pereira, C.L.; Savastano Jr., H.; Payá, J.; Santos, S.F.; Borrachero, M.V.; Monzó, J. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind. Crop. Prod. 49, 88–96. https://doi.org/10.1016/j.indcrop.2013.04.038

Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. (2016) Effect of pozzolans with diferent physical and chemical characteristics on concrete properties. Mater. Construc. 66 [322], 1-12.

Hoi, L.W.S.; Martincigh, B.S. (2013) Sugar cane plant fibres: Separation and characterization. Ind. Crop. Prod. 47, 1–12. https://doi.org/10.1016/j.indcrop.2013.02.017

Hugot, E. Handbook of Cane Sugar Engineering. 3rd ed. Amsterdam:Elsevier Science Publishers, (1986).

Sugarcane production. FAOSTAT – Food and Agriculture Organisation of the United Nations, Statistics Division; http://www.fao.org/faostat/en/#data/QC

Sugarcane production. UNICA – União da Indústria de Cana-de-Açúcar Website; http://www.unicadata.com. br/index.php?idioma=2

A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil. CONAB – Companhia Nacional de Abastecimento; http://www.agricultura.gov.br/assuntos/ sustentabilidade/agroenergia/arquivos-termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar/ termoeletrica-com-a-queima-do-bagaco-de-cana-de- acucar-no-brasil-safra-2009-2010.pdf

Cortez, L.A.B.; Gómez, E.O. (1998) A method for exergy analysis of sugarcane bagasse boilers. Braz. J. Chem. Eng. 15 [1]. https://doi.org/10.1590/S0104-66321998000100006

Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Costa, F.B.; Longo, E. (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J. Environ. Manage. 92, 2774–80. https://doi.org/10.1016/j.jenvman.2011.06.020 PMid:21733619

Hofsetz, K.; Silva, M.A. (2012) Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass Bioenerg 46, 564–573. https://doi.org/10.1016/j.biombioe.2012.06.038

Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005

Frías, M.; Villar, E.; Savastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496. https://doi.org/10.1016/j.cemconcomp.2011.02.003

Fairbairn, E.M.R.; Americano, B.B.; Cordeiro, G.C.; Paula, T.P.; Toledo Filho, R.D.; Silvoso, M.M. (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871. https://doi.org/10.1016/j.jenvman.2010.04.008 PMid:20493626

Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. (2009) Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013

UNE-EN 196-5. Método de ensayo de cementos. Parte 5: Ensayo de puzolanicidad para los cementos puzolánicos. Madrid: Asociación Espa-ola de Normalización y Certificación – AENOR; (2011).

NBR 7215. Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas – ANBT; (1996).

ASTM C-618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Philadelphia: ASTM International; (2005).

Allahverdi, A.; Shaverdi, B.; Kani, E. (2010) Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. Int. J. Civ. Eng. 8, 304–314.

Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. (2015) Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterisation of pastes and mechanical strength of mortars. Constr. Build. Mater. 94, 670–677. https://doi.org/10.1016/j.conbuildmat.2015.07.108

Murat, M. (1983) Hydration reaction and hardening of calcined clays and related minerals: II. Influence of mineralogical properties of raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 11, 511–518. https://doi.org/10.1016/0008-8846(83)90010-8

Serry, M.A.; Taha, A.S.; El-Hemaly, S.A.S.; El-Didamony, H. (1984) Metakaolin-lime hydration products. Thermochim. Acta 79, 103–110. https://doi.org/10.1016/0040-6031(84)87097-5

Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535–541. https://doi.org/10.1016/j.matdes.2014.08.022

Publicado

2018-06-30

Cómo citar

Pereira, A. M., Moraes, J. C., Moraes, M. J., Akasaki, J. L., Tashima, M. M., Soriano, L., Monzó, J., & Payá, J. (2018). Valorización de la ceniza de bagazo de azúcar (SCBA) con alto contenido de cuarzo como material puzolánico en mezclas de cemento Portland. Materiales De Construcción, 68(330), e153. https://doi.org/10.3989/mc.2018.00617

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

<< < 1 2