Influencia de la ceniza de bagazo y los áridos de hormigón reciclado en las propiedades de endurecimiento de hormigones de alta resistencia

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.04717

Palabras clave:

Hormigón, Árido, Resistencia a la compresión, Durabilidad, Cloruros

Resumen


En esta investigación se utilizó ceniza de bagazo como sustituto del cemento en hormigón de alta resistencia con áridos reciclados (HS-RAC). La piedra caliza fue sustituida por un árido 100% reciclado de hormigón y la ceniza de bagazo molida (GBA) en diferentes porcentajes (20, 35 y 50% en peso del material cementante) fue utilizada para reemplazar parcialmente al cemento Portland para producir hormigón de tipo HS-RAC. Los resultados indicaron que la sustitución de la piedra caliza molida por áridos de hormigón reciclado tiene un efecto negativo en las propiedades del hormigón. Aumentar la cantidad de GBA en el HS-RAC redujo la densidad e incrementó el volumen del espacio de los poros permeables. Las mezclas de hormigón preparadas reemplazando 20% en peso del cemento Portland por ceniza de bagazo molida presentaron mayor resistencia a la compresión que el hormigón convencional a los 90 días o más. El HS-RAC con GBA (hasta 50%) tuvo una durabilidad mayor que el hormigón convencional en términos de resistencia a la penetración de iones de cloruro, a pesar de tener una menor resistencia a la compresión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sata, V.; Jaturapitakkul, C.; Kiattikomol, K. (2007) Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Constr. Build. Mater. 21 [7], 1589–1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011

Nath, P.; Sarker, P. (2011) Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Eng. 14, 1149–1156. https://doi.org/10.1016/j.proeng.2011.07.144

Tangchirapat, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2009) Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Constr. Build. Mater. 23 [7], 2641–2646. https://doi.org/10.1016/j.conbuildmat.2009.01.008

Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement Concrete Res. 33 [5], 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5

Prince, M.J.R.; Singh, B. (2013) Bond behaviour of deformed steel bars embedded in recycled aggregate concrete. Constr. Build. Mater. 49, 852–862. . https://doi.org/10.1016/j.conbuildmat.2013.08.031

Evangelista, L.; de Brito, J. (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 32 [1], 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005

Haitao, Y.; Shizhu, T. (2015) Preparation and properties of high-strength recycled concrete in cold areas. Mater. Construcc. 65 [318], e050. https://doi.org/10.3989/mc.2015.03214

Srubar Iii, W.V. (2015) Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cem. Concr. Comp. 55, 103–111. https://doi.org/10.1016/j.cemconcomp.2014.09.003

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321] e075. https://doi.org/10.3989/mc.2016.08414

González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66 [323], e089. https://doi.org/10.3989/mc.2016.06415

Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. (2009) Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 23 [2], 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006

Purushothaman, R.; Amirthavalli, R.R.; Karan, L. (2015) Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete. J. Mater. Civ. Eng. 27 [5], 04014168. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001128

Sánchez-Roldán, Z.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2016) Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate. Mater. Construcc. 66 [321], e076. https://doi.org/10.3989/mc.2016.01715

Tam, V.W.Y.; Gao, X.F.; Tam, C.M. (2006) Comparing performance of modified two-stage mixing approach for producing recycled aggregate concrete. Mag Concrete. Res. 58 [7], 477–484. https://doi.org/10.1680/macr.2006.58.7.477

Limbachiya, M.; Meddah, M.S.; Ouchagour, Y. (2012) Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 27 [1], 439–449.

Kroehong, W.; Damrongwiriyanupap, N.; Sinsiri, T.; Jaturapitakkul, C. (2016) The Effect of Palm Oil Fuel Ash as a Supplementary Cementitious Material on Chloride Penetration and Microstructure of Blended Cement Paste. Arab. J. Sci. Eng. 41 [12], 4799–4808. https://doi.org/10.1007/s13369-016-2143-1

Chindaprasirt, P.; Chotithanorm, C.; Cao, H.T.; Sirivivatnanon, V. (2007) Influence of fly ash fineness on the chloride penetration of concrete. Constr. Build. Mater. 21 [2], 356–361. https://doi.org/10.1016/j.conbuildmat.2005.08.010

Gastaldini, A.L.G.; da Silva, M.P.; Zamberlan, F.B.; Mostardeiro Neto, C.Z. (2014) Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash. Constr. Build. Mater. 54, 369–377. https://doi.org/10.1016/j.conbuildmat.2013.12.044

Awal, A.S.M.A.; Shehu, I.A. (2013) Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash. Fuel. 105, 728–731. https://doi.org/10.1016/j.fuel.2012.10.020

Chalee, W.; Ausapanit, P.; Jaturapitakkul, C. (2010) Utilization of fly ash concrete in marine environment for long term design life analysis. Mater. Des. 31 [3], 1242–1249. https://doi.org/10.1016/j.matdes.2009.09.024

Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement. Concrete. Comp. 30 [5], 410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001

Martirena Hernández, J.F.; Middendorf, B.; Gehrke, M.; Budelmann, H. (1998) Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cement. Concrete. Res. 28 [11], 1525–1536. https://doi.org/10.1016/S0008-8846(98)00130-6

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009) Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23 [11], 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030

Rukzon, S.; Chindaprasirt, P. (2012) Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50. https://doi.org/10.1016/j.matdes.2011.07.045

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009) Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 23 [12], 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046

Rerkpiboon, A.; Tangchirapat, W.; Jaturapitakkul, C. (2015) Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101, Part 1, 983–989. https://doi.org/10.1016/j.conbuildmat.2015.10.140

ASTM C33/C33M. (2013) Standard specification for concrete aggregates. ASTM International. West Conshohocken. PA.

ASTM C494/C494M. (2013) Standard specification for chemical admixtures for concrete. ASTM International. West Conshohocken. PA.

ASTM C642. (2013) Standard test method for density, absorption, and voids in hardened concrete. ASTM International. West Conshohocken. PA.

ASTM C39/C39M. (2015) Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. West Conshohocken. PA.

NT Build 492. (1999) Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. Nordtest Building Method. Espoo. FL.

AASHTO TP64-03. (2007) Standard method of test for predicting chloride penetration of hydraulic cement concrete by the rapid migration procedure. American Association of State Highway and Transportation Officials, Washington, D.C.

Otsuki, N.; Miyazato, S.I.; Yodsudjai, W. (2003) Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mater. Civ. Eng. 15 [5], 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)

Safiuddin, M.; Alengaram, U.J.; Rahman, M.M.; Salam, M.A.; Jumaat, M.Z. (2013) Use of recycled concrete aggregate in concrete: a review. J. Civ. Eng. Manag. 19 [6], 796–810. https://doi.org/10.3846/13923730.2013.799093

Khoshkenari, A.G.; Shafigh, P.; Moghimi, M.; Mahmud, H.B. (2014) The role of 0–2 mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete. Mater. Des. 64, 345–354. https://doi.org/10.1016/j.matdes.2014.07.048

Siddique, R.; Singh, K.; Kunal; Singh, M.; Corinaldesi, V.; Rajor, A. (2016) Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 121, 112–119. https://doi.org/10.1016/j.conbuildmat.2016.05.146

Wongkeo, W.; Thongsanitgarn, P.; Ngamjarurojana, A.; Chaipanich, A. (2014) Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Mater. Des. 64, 261–269. https://doi.org/10.1016/j.matdes.2014.07.042

Li, T.; Xiao, J.; Zhu, C. (2016) Hydration process modeling of ITZ between new and old cement paste. Constr. Build. Mater. 109, 120–127. https://doi.org/10.1016/j.conbuildmat.2016.01.053

Kong, D.; Lei, T.; Zheng, J.; Ma, C.; Jiang, J.; Jiang, J. (2010) Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Constr. Build. Mater. 24 [5], 701–708. https://doi.org/10.1016/j.conbuildmat.2009.10.038

Poon, C.S.; Shui, Z.H.; Lam, L. (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 18 [6], 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005

López Gayarre, F.; López-Colina Pérez, C.; Serrano López, M.A.; Domingo Cabo, A. (2014) The effect of curing conditions on the compressive strength of recycled aggregate concrete. Constr. Build. Mater. 53, 260–266. https://doi.org/10.1016/j.conbuildmat.2013.11.112

Ajdukiewicz, A.; Kliszczewicz, A. (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cement. Concrete. Comp. 24 [2], 269–279. https://doi.org/10.1016/S0958-9465(01)00012-9

Lam, L.; Wong, Y.L.; Poon, C.S. (2000) Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement Concrete Res. 30 [5], 747–756. https://doi.org/10.1016/S0008-8846(00)00213-1

?avija, B.; Lukovic´, M.; Schlangen, E. (2014) Lattice modeling of rapid chloride migration in concrete. Cement Concrete Res. 61–62, 49–63.

Jensen, H.U.; Pratt, P.L. (1989) The binding of chloride ions by pozzolanic product in fly ash cement blends. Adv. Cem. Res. 2 [7], 121–129. https://doi.org/10.1680/adcr.1989.2.7.121

Sumranwanich, T.; Tangtermsirikul, S. (2004) A model for predicting time-dependent chloride binding capacity of cement-fly ash cementitious system. Mater. Struct. 37 [6], 387–396. https://doi.org/10.1007/BF02479635

Ying, J.; Xiao, J.; Meng, Q. (2016) On Probability Distribution of Chloride Diffusion Coefficient for Recycled Aggregate Concrete. Int. J. Concr. Struct. Mater. 10 [1], 61–73. https://doi.org/10.1007/s40069-015-0123-6

Jain, J.; Neithalath, N. (2011) Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration. Mater. Chem. Phys. 129 [1–2], 569–579. https://doi.org/10.1016/j.matchemphys.2011.04.057

ACI 363R. (2010) Report on high-strength concrete. American Concrete Institute. Farmington Hills. Michigan.

Publicado

2018-06-30

Cómo citar

Rattanachu, P., Karntong, I., Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2018). Influencia de la ceniza de bagazo y los áridos de hormigón reciclado en las propiedades de endurecimiento de hormigones de alta resistencia. Materiales De Construcción, 68(330), e158. https://doi.org/10.3989/mc.2018.04717

Número

Sección

Artículos