Utilización de áridos procedentes de residuos de construcción y demolición en morteros activados alcalinamente

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.07417

Palabras clave:

Morteros, Morteros activados alcalinamente, Residuos de Construcción y demolición (C&DW), Prestaciones mecánicas, Resistencia a fuego, Retracción

Resumen


Este estudio explora la viabilidad tecnológica del uso de residuos de construcción y demolición (C & DW) como árido reciclado en morteros activados alcalinamente, determinando el comportamiento mecánico y microestructural. Asimismo, se determinó la retracción sufrida por morteros de escoria activados alcalinamente (AAS) y la resistencia al fuego de morteros de cenizas volantes activadas alcalinamente (AAFA) con incorporación de estos áridos reciclado. Se utilizó arena silícea normalizada y dos tipos de áridos de hormigón reciclado en diferentes proporciones. Los resultados mostraron que la demanda de agua era más alta en los morteros preparados con árido reciclado. También se observó que el reemplazo parcial con un 20% (80/20) del árido convencional con el material reciclado producía morteros con alta resistencia mecánica, aunque la porosidad total también aumentaba. El reemplazo total, sin embargo, dio peor rendimiento mecánico. Los estudios de resistencia al fuego y retracción realizados, indicaron que los morteros de cementos activados alcalinamente preparados con áridos reciclados en proporción 80/20 presentan un rendimiento aceptable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Pacheco-Torgal, F., Labrincha, L. (2013). Review: The future of construction materials research and the seventh UN Millennium Development Goal: A few insights. Construc. Build. Mat., 40: 729–737. https://doi.org/10.1016/j.conbuildmat.2012.11.007

Puertas, F., Santos, R., Alonso, M.M., del Río, M. (2015). Alkali-activated cement mortars containing recycled clay-based construction and demolition waste. Ceram. Silikaty, 59: 202–210.

Müller, H., Haist, M., Vogel, M. (2014). Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Construc. Build. Mat., 67: 321–337. https://doi.org/10.1016/j.conbuildmat.2014.01.039

European Commision, Towards a circular economy, Available: https://ec.europa.eu/commission/priorities/jobs-growth-and-investment/towards-circular-economy_en. [Last access: july 2017].

Palomo, A., Krivenko, P., García-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jimenez, A. (2014). A review on alkaline activation: new analytical perspectives. Mater. Construcc., 64, [315] e022. https://doi.org/10.3989/mc.2014.00314

Provis, J., Palomo, A., Shi, C. (2015). Advances in understanding alkali-activated materials. Cem. Concr. Res. 78: 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013

Villaquirán-Caicedo, M., Mejía de Gutierrez, R., Gallego, N. (2017). A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature. Mater. Construcc. 67, [326] e117. https://doi.org/10.3989/mc.2017.02316

Fernández-Jimenez, A., Puertas, F. (197). Alkali-activated slag cements: Kinetic studies. Cem. Concr. Res. 27: 359–368. https://doi.org/10.1016/S0008-8846(97)00040-9

Puertas, F., Palacios, M., Manzano, H., Dolado, J., Rico, A., Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Europ. Cer. Soc., 31: 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

Martín Morales, M. (2013). El residuo de construcción y demolición (RCD) como árido en la elaboración de prefabricados no estructurales. PhD Thesis. Univ. Granada (In spanish)

Vegas, I., Iba-ez, J., Lisbona, A., Sáez de Cortazar, A., Frías, M. (2011). Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Construc. Build. Mat. 25., [5], 2674–2682. https://doi.org/10.1016/j.conbuildmat.2010.12.018

Fernández-Ledesma, E., Jiménez, J., Ayuso, J., Corinaldesi, V., Iglesias-Godino, F. (2016). A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc., 66, [321] e075. https://doi.org/10.3989/mc.2016.08414

Shi, X., Collins, F., Zhao, X., Whang, Q. (2012). Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete. J. Haz. Mater, 237–238, 20–29. https://doi.org/10.1016/j.jhazmat.2012.07.070 PMid:22954605

Behera, M., Bhattacharyya, S., Minocha, A., Deoliya, R., Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete. A breakthrough towards sustainability in construction sector. A review, Construc. Build. Mat. 68: 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Puertas, F., Barba, A., Gazulla, M., Gómez, M., Palacios, M., Martínez-Ramirez, S. (2006). Ceramic wastes as raw materials in portland cement clinker fabrication.·characterization and alkalineactivation. Mater. Construcc., 56: [281], 73–84.

Allahverdi, A., Kani, E. (2009). Construction waste as raw materials for geopolymer binders. Int. J. Civ. Engin. 7: [3], 154–160.

Reig, L., Tashima, M., Borrachero, M.V., Monzó, J., Cheeseman, C., Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construc. Build. Mat, 43: 98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031

Robayo-Salazar, R.A., Rivera, J., Mejía de Gutiérrez, R. (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construc. Build. Mat. 149: 130–138. https://doi.org/10.1016/j.conbuildmat.2017.05.122

Rakhimova, N., Rakhimov, R. (2015). Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mat. Desig. 85: 324–331. https://doi.org/10.1016/j.matdes.2015.06.182

Shaikh, F. (2016) Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates, Int.l J. Sust. Built Envir. 5: 277–287.

Parthiban, K., Mohan, K.S.R. (2017). Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete, Construc. Build. Mat. 133: 65–72. https://doi.org/10.1016/j.conbuildmat.2016.12.050

UNE-EN 196-2:2014. Method of testing cement - Part 2: Chemical analysis of cement, 2014.

UNE-EN 80243, 1999. Cement test metyhods. Chemical analysis. Determination of free calcium oxyde: ethylenglycol method.

Hooton, R., Emery, J. (1983). Glass content determination and strength development predictions for vitrified blast furnace slag. 1st Int. Conf. on the fly ash, silica fume, slag and other mineral by products in concrete, Montebello, Quebec, Canada.

Arjuman, P., Silbee, M., Roy, D. (1997). Quantitative determination of the crystalline and amorphous phases in low calcium fly ash, 10th International Congress on the Chemistry of Cement, Gotheburg.

UNE 80122:1991, Methods of testing cement. Determination of fineness (Blaine method).

UNE-EN-1744-1, 1999. Tests for chemical properties of aggregates. part 1: chemical analysis.

UNE-80-217:91, 1991. Methods of testing cement. Determination of chloride, carbon dioxide and alkali content.

Valverde-Espinosa, I. (1993). Caracterización de aridos para hormigón en la depresión de Granada, PhD Thesis. Univ. Granada (In spanish)

Valverde-Espinosa, I. (2014). Los áridos carbonatados de Granada en relación con algunas prescripciones de la EH-91, Technical report (in spanish).

EN-1097-6:2001/A1:2006, Tests for mechanical and physical properties of aggregates Part 6: Determination of particle density and water absorption.

UNE-EN 933-1: 2012, Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.

UNE-EN196-1, 2011 Methods of testing cements. Determination of strength.

Puertas, F., Varga, C., Alonso, M.M. (2014). Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution, Cem. Concr. Comp.,53, 279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012

Palacios, M., Banfill, P., Puertas, F. (2008). Rheology and setting of alkali-activated slag pastes and mortars: Effect of organic admixture, ACI Mater. J, 105: 140–148.

Alonso, M.M., Gismera, S., Blanco, M.T., Lanzón, M., Puertas, F. (2017). Alkali-activated mortars: Workability and rheological behaviour. Construc. Build. Mat. 145: 576–587. https://doi.org/10.1016/j.conbuildmat.2017.04.020

UNE-EN-1015-3: 2000. Methods of test for mortar for masonry. Part 3: Determination of consistence of fresh mortar (by flow table).

Silva, R., De Brito, J., Dhir. R.K. (2016). Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Construc. Build. Mat. 105: [15] 400–415. https://doi.org/10.1016/j.conbuildmat.2015.12.171

Corinaldesi, V., Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construc. Build. Mat. 23: 289– 94. https://doi.org/10.1016/j.conbuildmat.2007.12.006

Yildrim, S., Meyer, C., Herfellner, S. (2015). Effects of internal curing on the strength, drying shrinkage and freeze–thaw resistance of concrete containing recycled concrete aggregates. Construc. Build. Mat. 91: 288–296. https://doi.org/10.1016/j.conbuildmat.2015.05.045

Angulo-Ramírez, D., Mejía de Gutiérrez, R., Puertas, F. (2017). Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Construc. Build. Mat.140: 119–128. https://doi.org/10.1016/j.conbuildmat.2017.02.092

Fernández-Jiménez, A., Palomo, J.G., Puertas, F. (1999). Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 29, [8]: 1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4

Puertas, F., Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation," Cem. Concr. Res. 57: 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005

Luna-Galiano, Y., Fernández-Pereira, C., Izquierdo, M. (2016). Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater. Construcc., 66: [324], e098. https://doi.org/10.3989/mc.2016.10215

Palacios, M: Puertas, F. (2007). Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37: 691–702. https://doi.org/10.1016/j.cemconres.2006.11.021

Medjigbodo, S., Bendimerad, A., Roziere, E., Loukili, A. (2018). How do recycled concrete aggregates modify the shrinkage and self-healing properties?. Cem. Concr. Comp. 86: 72–86. https://doi.org/10.1016/j.cemconcomp.2017.11.003

Lee, N., Abate, S., Kim, H-K. (2018). Use of recycled aggregates as internal curing agent for alkali-activated slag system. Construc. Build. Mat. 159: 286–296. https://doi.org/10.1016/j.conbuildmat.2017.10.110

Martin, A., Pastor, J., Palomo, A., Fernández-Jimenez, A. (2015). Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers), Construc. Build. Mat. 93: 1188–1196. https://doi.org/10.1016/j.conbuildmat.2015.04.044

Pan, Z., Tao, Z., Cao, Y., Wuhrer, R., Murphy, T. (2018). Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem. Concr. Comp. 86: 9–18. https://doi.org/10.1016/j.cemconcomp.2017.09.011

Publicado

2018-09-30

Cómo citar

Alonso, M. M., Rodríguez, A., & Puertas, F. (2018). Utilización de áridos procedentes de residuos de construcción y demolición en morteros activados alcalinamente. Materiales De Construcción, 68(331), e164. https://doi.org/10.3989/mc.2018.07417

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>