Desarrollo de materiales de construcción aislantes ligeros a partir de desechos de perlita

Autores/as

DOI:

https://doi.org/10.3989/mc.20198.12517

Palabras clave:

Geopolimerización, Espumoso, Inorgánico, Ligero

Resumen


Este documento investiga el desarrollo de tableros de espuma de geopolímero, utilizando residuos de perlita como materia prima. Este tipo de materiales ligeros combina la tecnología de geopolimerización con el proceso de formación de espuma. El mecanismo de formación de espuma se basa en la generación de un gas retenido por la matriz del geopolímero en forma de vacíos individuales o interconectados. En este estudio, el agente espumante inorgánico es el peróxido de hidrógeno (H2O2), que se agrega a la pasta inicial en diferentes cantidades mediante agitación mecánica. Los materiales porosos producidos tienen densidades efectivas entre 408–476.5 kg/m3, conductividades térmicas entre 0.076–0.095 W/m.K y diferentes tipos de microestructura, dependiendo de la concentración del activador y el contenido del agente espumante. Para evaluar la porosidad y la distribución de tamaños de los vacíos, se aplicaron técnicas de procesamiento de imágenes en las imágenes digitales de las muestras. De acuerdo con estos resultados, los materiales ligeros sintetizados exhiben propiedades térmicas similares o incluso mejores que los materiales porosos de hormigón actuales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Hammond, G.P.; Jones, C.I. (2006) Inventory of (Embodied) Carbon & Energy (ICE). Department of Mechanical Engineering. International Journal of Research in Engineering and Technology

http://www.perlite.org

http://www.eaaca.org

Svanholm, G. (1990) Pouring into molds with removable walls, stiffening, autoclaving US4902211 A

Holt, E.; Raivio. P. (2004) Use of gasification residues in aerated autoclaved concrete. Cem. Concr. Res. 35, 796–802. https://doi.org/10.1016/j.cemconres.2004.05.005

Jerman, M.; Keppert. M.; Vyborny, J.; Cerny, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Construc. Build. Mat. 41, 352–35. https://doi.org/10.1016/j.conbuildmat.2012.12.036

http://www.masoncontractors.org/2008/10/16/using-autoclaved-aerated-concrete-correctly

Mostafa, NY. (2005) Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res 35, 1349–57. https://doi.org/10.1016/j.cemconres.2004.10.011

http://keu92.org/uploads/Search%20engineering/Light% 20weight%20concrete.pdf

https://theconstructor.org/concrete/foam-concrete-materials-properties-advantages-production/15921/

Giannopoulou, I.; Dimas, D.; Maragos, I.; Panias, D. (2009) Utilization of metallurgical solid wastes/by-products for development of inorganic polymeric construction materials. Global NEST Journal 11, 127–136

Davidovits, J. (1994) Properties of geopolymer cements. In Proc. 1st international conference on alkaline cements and concretes (KievUkraine), 131–149

Sakkas, K.; Panias, D.; Nomikos, P.; Sofianos, A. (2014b) Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology 43, 148–56. https://doi.org/10.1016/j.tust.2014.05.003

Kamseu, E.; Nait-Ali, B.; Bignozzi, MC.; Leonelli, C.; Rossignol, S.; Smith, D.S. (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Europ. Ceram. Soc. 32, 1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

Zhang, Z.; Provis, J.; Reid, A.; Wang, H. (2014) Geopolymer foam concrete: An emerging material for sustainable construction. Construc. Build. Mat. 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081

Williams, B. H. (1928) The thermal decomposition of hydrogen peroxide in aqueous solutions. Faraday Soc. 24, 245–255. https://doi.org/10.1039/tf9282400245

Masi, G.; LesVickers, W.; Bignozzi, M-C.; Riessen, A. (2014) A comparison between different foaming methods for the synthesis of lightweight geopolymers. Ceram. Internat. 40 [9] Part A, 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

Wefers K. and Misra C. (1987) Oxides and Hydroxides of Aluminum: Technical Report 19–Revised. Alcoa Laboratories. Pittsburgh, 64–71

Tsaousi, G-M.; Douni, I.; Panias, D. (2016) Characterization of the properties of perlite geopolymer pastes. Mater. Construcc. 66[324]:e102. https://doi.org/10.3989/mc.2016.10415

Koschan, A.; Abidi, M. (2008) Digital color image processing. Wiley–Interscience. https://doi.org/10.1002/9780470230367

Atherton, T. J.; Kerbyson, D.J. (1999) Size invariant circle detection. Image and Vision Computing 17, 795–803. https://doi.org/10.1016/S0262-8856(98)00160-7

Cuevas, E.; Wario, F.; Osuna- Enciso, V.; Zaldivar, D.; Pérez-Cirneros, M. (2012) Fast algorithm for multiple-circle detection on images using Learning Automata. IET Image Processing 6, 1124–1135. https://doi.org/10.1049/iet-ipr.2010.0499

Rad, A.A.; Faez, K.; Qaragozlou, N. (2003) Fast circle detection using gradient pair vectors. In Proc. VIIth Digital Image Computing: Techniques and Applications PMCid:PMC3023437

Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. (1990) Comparative study of Hough transform methods for circle finding. Image and Vision Computing 8, 71–77. https://doi.org/10.1016/0262-8856(90)90059-E

Illingworth, J.; Kittler, J. (1987) The Adaptive Hough Transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 [5], 690–698. https://doi.org/10.1109/TPAMI.1987.4767964

Illingworth, J.; Kittler, J. (1988) A survey of the Hough transform. Computer Vision, Graphics and Image Processing 44, 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1

Pan, L.; Chu, W. S.; Saragih, M., J.; Torre, F. (2010) Fast and robust circular object detection with probabilistic pairwise voting (PPV). IEEE Signal Processing Letters 18, 639–642.

Chung, K.L.; Chen, T.C. (2001) An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding 83, 172–191. https://doi.org/10.1006/cviu.2001.0923

Nambiar, E.K.; Ramamurthy, K. (2007) Air-void characterisation of foam concrete. Cem. Concr. Res 37 [2], 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009

Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. (2016) Factors influencing the compressive strength of fly ash based geopolymers. Construc. Build. Mat. 110 [5], 355–368. https://doi.org/10.1016/j.conbuildmat.2015.11.045

Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Comp. 62:97–105. https://doi.org/10.1016/j.jallcom.2015.05.131

Ducman, V.; Korat, L. (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mat. Charac. 113 207–213. https://doi.org/10.1016/j.matchar.2016.01.019

Alengaram, U.J.; Al-Muhit, B.A.; Jumaat, M.Z.; Liu, M.Y.J. (2013) A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mat. Des. 51, 522-529. https://doi.org/10.1016/j.matdes.2013.04.078

Song, Y.; Li, B.; Yang, E.H.; Liu, Y.; Ding, T. (2015) Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Comp. 56, 51–58. https://doi.org/10.1016/j.cemconcomp.2014.11.006

Torres, M.L.; García-Ruiz, P.A. (2009) Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Comp. 31, 114–119. https://doi.org/10.1016/j.cemconcomp.2008.11.003

Yong Jing Lia, M.; Alengaram, U.J.; Santhanam, M.; Jumaat, M.Z.; Hung Mo, K. (2016) Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construc. Build. Mat. 120:112–122. https://doi.org/10.1016/j.conbuildmat.2016.05.076

Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Minerals Engineering 23, 1146–51. https://doi.org/10.1016/j.mineng.2010.07.015

Tsaousi, G-M.; Douni, I.; Taxiarchou, M.; Panias. D.; Paspaliaris, I. (2014) Development of foamed Inorganic Polymeric Materials based on Perlite. IOP Conference Series: Materials Science and Engineering 123.

Newman, J.; Owens, P. (2013) Properties of lightweight concrete. In: Newman J, Choo RS, editors. Advanced concrete technology Part 3: process. Butterworth-Heinemann Press; 2/7–2/9.

Hamad, A.J. (2014) Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. Int. J. Mat. Sci. Eng. 2, 152–157. https://doi.org/10.12720/ijmse.2.2.152-157

Publicado

2019-03-30

Cómo citar

Tsaousi, G. M., Profitis, L., Douni, I., Chatzitheodorides, E., & Panias, D. (2019). Desarrollo de materiales de construcción aislantes ligeros a partir de desechos de perlita. Materiales De Construcción, 69(333), e175. https://doi.org/10.3989/mc.20198.12517

Número

Sección

Artículos