Desarrollo de materiales de construcción aislantes ligeros a partir de desechos de perlita
DOI:
https://doi.org/10.3989/mc.20198.12517Palabras clave:
Geopolimerización, Espumoso, Inorgánico, LigeroResumen
Este documento investiga el desarrollo de tableros de espuma de geopolímero, utilizando residuos de perlita como materia prima. Este tipo de materiales ligeros combina la tecnología de geopolimerización con el proceso de formación de espuma. El mecanismo de formación de espuma se basa en la generación de un gas retenido por la matriz del geopolímero en forma de vacíos individuales o interconectados. En este estudio, el agente espumante inorgánico es el peróxido de hidrógeno (H2O2), que se agrega a la pasta inicial en diferentes cantidades mediante agitación mecánica. Los materiales porosos producidos tienen densidades efectivas entre 408–476.5 kg/m3, conductividades térmicas entre 0.076–0.095 W/m.K y diferentes tipos de microestructura, dependiendo de la concentración del activador y el contenido del agente espumante. Para evaluar la porosidad y la distribución de tamaños de los vacíos, se aplicaron técnicas de procesamiento de imágenes en las imágenes digitales de las muestras. De acuerdo con estos resultados, los materiales ligeros sintetizados exhiben propiedades térmicas similares o incluso mejores que los materiales porosos de hormigón actuales.
Descargas
Citas
Hammond, G.P.; Jones, C.I. (2006) Inventory of (Embodied) Carbon & Energy (ICE). Department of Mechanical Engineering. International Journal of Research in Engineering and Technology
Svanholm, G. (1990) Pouring into molds with removable walls, stiffening, autoclaving US4902211 A
Holt, E.; Raivio. P. (2004) Use of gasification residues in aerated autoclaved concrete. Cem. Concr. Res. 35, 796–802. https://doi.org/10.1016/j.cemconres.2004.05.005
Jerman, M.; Keppert. M.; Vyborny, J.; Cerny, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Construc. Build. Mat. 41, 352–35. https://doi.org/10.1016/j.conbuildmat.2012.12.036
http://www.masoncontractors.org/2008/10/16/using-autoclaved-aerated-concrete-correctly
Mostafa, NY. (2005) Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res 35, 1349–57. https://doi.org/10.1016/j.cemconres.2004.10.011
http://keu92.org/uploads/Search%20engineering/Light% 20weight%20concrete.pdf
https://theconstructor.org/concrete/foam-concrete-materials-properties-advantages-production/15921/
Giannopoulou, I.; Dimas, D.; Maragos, I.; Panias, D. (2009) Utilization of metallurgical solid wastes/by-products for development of inorganic polymeric construction materials. Global NEST Journal 11, 127–136
Davidovits, J. (1994) Properties of geopolymer cements. In Proc. 1st international conference on alkaline cements and concretes (KievUkraine), 131–149
Sakkas, K.; Panias, D.; Nomikos, P.; Sofianos, A. (2014b) Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology 43, 148–56. https://doi.org/10.1016/j.tust.2014.05.003
Kamseu, E.; Nait-Ali, B.; Bignozzi, MC.; Leonelli, C.; Rossignol, S.; Smith, D.S. (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Europ. Ceram. Soc. 32, 1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030
Zhang, Z.; Provis, J.; Reid, A.; Wang, H. (2014) Geopolymer foam concrete: An emerging material for sustainable construction. Construc. Build. Mat. 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081
Williams, B. H. (1928) The thermal decomposition of hydrogen peroxide in aqueous solutions. Faraday Soc. 24, 245–255. https://doi.org/10.1039/tf9282400245
Masi, G.; LesVickers, W.; Bignozzi, M-C.; Riessen, A. (2014) A comparison between different foaming methods for the synthesis of lightweight geopolymers. Ceram. Internat. 40 [9] Part A, 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108
Wefers K. and Misra C. (1987) Oxides and Hydroxides of Aluminum: Technical Report 19–Revised. Alcoa Laboratories. Pittsburgh, 64–71
Tsaousi, G-M.; Douni, I.; Panias, D. (2016) Characterization of the properties of perlite geopolymer pastes. Mater. Construcc. 66[324]:e102. https://doi.org/10.3989/mc.2016.10415
Koschan, A.; Abidi, M. (2008) Digital color image processing. Wiley–Interscience. https://doi.org/10.1002/9780470230367
Atherton, T. J.; Kerbyson, D.J. (1999) Size invariant circle detection. Image and Vision Computing 17, 795–803. https://doi.org/10.1016/S0262-8856(98)00160-7
Cuevas, E.; Wario, F.; Osuna- Enciso, V.; Zaldivar, D.; Pérez-Cirneros, M. (2012) Fast algorithm for multiple-circle detection on images using Learning Automata. IET Image Processing 6, 1124–1135. https://doi.org/10.1049/iet-ipr.2010.0499
Rad, A.A.; Faez, K.; Qaragozlou, N. (2003) Fast circle detection using gradient pair vectors. In Proc. VIIth Digital Image Computing: Techniques and Applications PMCid:PMC3023437
Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. (1990) Comparative study of Hough transform methods for circle finding. Image and Vision Computing 8, 71–77. https://doi.org/10.1016/0262-8856(90)90059-E
Illingworth, J.; Kittler, J. (1987) The Adaptive Hough Transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 [5], 690–698. https://doi.org/10.1109/TPAMI.1987.4767964
Illingworth, J.; Kittler, J. (1988) A survey of the Hough transform. Computer Vision, Graphics and Image Processing 44, 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1
Pan, L.; Chu, W. S.; Saragih, M., J.; Torre, F. (2010) Fast and robust circular object detection with probabilistic pairwise voting (PPV). IEEE Signal Processing Letters 18, 639–642.
Chung, K.L.; Chen, T.C. (2001) An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding 83, 172–191. https://doi.org/10.1006/cviu.2001.0923
Nambiar, E.K.; Ramamurthy, K. (2007) Air-void characterisation of foam concrete. Cem. Concr. Res 37 [2], 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009
Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. (2016) Factors influencing the compressive strength of fly ash based geopolymers. Construc. Build. Mat. 110 [5], 355–368. https://doi.org/10.1016/j.conbuildmat.2015.11.045
Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Comp. 62:97–105. https://doi.org/10.1016/j.jallcom.2015.05.131
Ducman, V.; Korat, L. (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mat. Charac. 113 207–213. https://doi.org/10.1016/j.matchar.2016.01.019
Alengaram, U.J.; Al-Muhit, B.A.; Jumaat, M.Z.; Liu, M.Y.J. (2013) A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mat. Des. 51, 522-529. https://doi.org/10.1016/j.matdes.2013.04.078
Song, Y.; Li, B.; Yang, E.H.; Liu, Y.; Ding, T. (2015) Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Comp. 56, 51–58. https://doi.org/10.1016/j.cemconcomp.2014.11.006
Torres, M.L.; García-Ruiz, P.A. (2009) Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Comp. 31, 114–119. https://doi.org/10.1016/j.cemconcomp.2008.11.003
Yong Jing Lia, M.; Alengaram, U.J.; Santhanam, M.; Jumaat, M.Z.; Hung Mo, K. (2016) Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construc. Build. Mat. 120:112–122. https://doi.org/10.1016/j.conbuildmat.2016.05.076
Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Minerals Engineering 23, 1146–51. https://doi.org/10.1016/j.mineng.2010.07.015
Tsaousi, G-M.; Douni, I.; Taxiarchou, M.; Panias. D.; Paspaliaris, I. (2014) Development of foamed Inorganic Polymeric Materials based on Perlite. IOP Conference Series: Materials Science and Engineering 123.
Newman, J.; Owens, P. (2013) Properties of lightweight concrete. In: Newman J, Choo RS, editors. Advanced concrete technology Part 3: process. Butterworth-Heinemann Press; 2/7–2/9.
Hamad, A.J. (2014) Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. Int. J. Mat. Sci. Eng. 2, 152–157. https://doi.org/10.12720/ijmse.2.2.152-157
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.