Resistencia de la superficie lateral del pilote a la descarga y a la degradación del módulo cortante en suelos arenosos

Autores/as

DOI:

https://doi.org/10.3989/mc.2019.03718

Palabras clave:

Hormigón, Composite, Estabilidad, Propiedades mecánicas, Caracterización

Resumen


Se han realizado 36 series de ensayos de corte directo con carga y descarga para analizar el comportamiento mecánico del interfaz entre la superficie del lateral del pilote y el suelo. Los resultados demuestran que al aplicar un determinado esfuerzo normal, el esfuerzo cortante residual en el interfaz rugoso entre el suelo arenoso y el hormigón tiende a ser constante. Tanto el módulo cortante inicial como el esfuerzo de cizalla máximo disminuyen al incrementar el grado de descarga y aumentan con la rugosidad del interfaz. Dada una misma rugosidad interfacial, el esfuerzo cortante interfacial máximo crece más rápidamente y su reducción máxima disminuye más lentamente al aumentar el grado de descarga. Se ha empleado el «método del desplazamiento del esfuerzo cortante» para desarrollar un modelo que describe la relación entre la resistencia de la superficie lateral del pilote y el desplazamiento. La función propuesta tiene en cuenta tanto la influencia de la descarga radial como la degradación del módulo cortante del suelo que rodea el pilote. Se analiza la influencia de la descarga radial y la de la rugosidad del interfaz sobre la degradación del módulo cortante equivalente mediante un solo parámetro de ajuste, b. Se ha confirmado que el acuerdo entre el modelo y los datos empíricos de los ensayos de corte directo de las 36 series analizadas es bueno.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ni, P. P.; Song, L. H.; Mei, G. X.; Zhao, Y. L. (2017) Generalized nonlinear softening load-transfer model for axially loaded piles. Int. J. Geomech. 17 [8], 04017019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000899

Guo, W. D. (2001) Pile capacity in nonhomogeneous softening soil. Soils Found. 41 [2], 111-120. https://doi.org/10.3208/sandf.41.2_111

Seed, H. B.; Reese, L. C. (1957) The action of soft clay along friction piles. Transactions of the ASCE. 122 [1], 731-754.

Chow, Y. K. (1986) Analysis of vertically loaded pile groups. Int. J. Numer. Anal. Meth. Geomech. 10 [1], 59-72. https://doi.org/10.1002/nag.1610100105

Chow, Y. K. (1989) Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Geotechnique. 39 [2], 203-212. https://doi.org/10.1680/geot.1989.39.2.203

Mu, L. L.; Chen, Q. S.; Huang, M. S.; Basack, S. (2017) Hybrid approach for rigid piled-raft foundations subjected to coupled loads in layered soils. Int. J. Geomech. 17 [5], 04016122. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000825

Randolph, M. F.; Wroth, C. P. (1978) Analysis of deformation of vertically loaded piles. J. Geotech. Eng. Div. 104 [12], 1465-1488.

Randolph, M. F.; Wroth, C. P. (1979) An analysis of the vertical deformation of pile groups. Geotechnique. 29 [4], 423-439. https://doi.org/10.1680/geot.1979.29.4.423

Zhang, Q. Q.; Zhang, Z. M. (2011) Study on interaction between dissimilar piles in layered soils. Int. J. Numer. Anal. Meth. Geomech. 35 [1], 67-81. https://doi.org/10.1002/nag.893

Poulos, H. G.; Davis, E. H. (1968) The settlement behaviour of single axially loaded incompressible piles and piers. Geotechnique. 18 [3], 351-371. https://doi.org/10.1680/geot.1968.18.3.351

Wang, W.; Yang, M. (2006) An improved elastic analysis method of pile foundation under vertical loading. Roc. Soil. Mech. 27 [8], 1403-1406 (in Chinese).

Xu, K. J.; Poulos, H. G. (2000) General elastic analysis of piles and pile groups. Int. J. Numer. Anal. Meth. Geomech. 24 [15], 1109-1138. https://doi.org/10.1002/1096-9853(20001225)24:15<1109::AID-NAG72>3.0.CO;2-N

Ai, Z. Y.; Han, J. (2009) Boundary element analysis of axially loaded piles embedded in a multi-layered soil. Comput. Geotech. 36 [3], 427-434. https://doi.org/10.1016/j.compgeo.2008.06.001

Cheung, Y. K.; Tham, L. G.; Guo, D. J. (1988) Analysis of pile group by infinite layer method. Geotechnique. 38 [3], 415-431. https://doi.org/10.1680/geot.1988.38.3.415

Desai, C. S. (1974) Numerical design analysis for piles in sands. J. Geotech. Eng. Div. 100 [6], 613-635. https://doi.org/10.1016/0148-9062(74)91242-X

Lee, C. Y. (1991) Discrete layer analysis of axially loaded piles and pile groups. Comput. Geotech. 11 [4], 295-313. https://doi.org/10.1016/0266-352X(91)90014-7

Sheng, D. C.; Eigenbrod, K. D.; Wriggers, P. (2005) Finite element analysis of pile installation using large-slip frictional contact. Comput. Geotech. 32 [1], 17-26. https://doi.org/10.1016/j.compgeo.2004.10.004

Trochanis, A. M.; Bielak, J.; Christiano, P. (1991) Three - dimensional nonlinear study of piles. J. Geotech. Eng. 117 [3], 429-447. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(429)

Everett, J. P. (1991) Load transfer functions and pile performance monitoring. Int. J. Roc. Mech. Min. Sciences. 30 [1], 229-234.

Li, Y. H.; Wang, W. D.; Wu, J. B. (2015) Bearing deformation of large-diameter and super-long bored piles based on pile shaft generalized shear model. Chin. J. Geotech. Eng. 37 [12], 2157-2166 (in Chinese).

Guo, W. D.; Randolph, M. F. (1997) Vertically loaded piles in non-homogeneous media. Int. J. Numer. Anal. Meth. Geomech. 21 [8], 507-532. https://doi.org/10.1002/(SICI)1096-9853(199708)21:8<507::AID-NAG888>3.0.CO;2-V

Zhu, H.; Chang, M. F. (2002) Load transfer curves along bored piles considering modulus degradation. J. Geotech. Geoenviron. Eng. 128 [9], 764-774. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(764)

Lade, P. V.; Duncan, J. M. (1976) Stress-path independent behavior of cohesionless soil. J. Geotech. Eng. Div. 102 [1], 51-68.

Lambe, T. W. (1967) Stress path method. J. Soil. Mech. Found. Div. 93 [6], 309-331.

Wang, Z. J.; Xie, X. Y.; Wang, J. C. (2012) A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils. Comput. Geotech. 45, 118-126. https://doi.org/10.1016/j.compgeo.2012.05.011

Yang, J. J. (2005) Similarity theory and structural model test. Wuhan University of Technology Press, Wuhan. (in Chinese)

Zhao, C. F.; Wu, Y.; Zhao, C.; Tao, G. X. (2018) Experimental research on the clay-concrete interface shear behaviors considering the roughness and unloading Effect. Proc. of GeoShanghai 2018 International Conf. Fundamentals of soil behaviours, 522-530. https://doi.org/10.1007/978-981-13-0125-4_58

Dove, J. E.; Jarrett, J. B. (2002) Behavior of dilative sand interfaces in a geotribology framework. J. Geotech. Geoenviron. Eng. 128 [1], 25-37. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(25)

Zhang, G.; Zhang, J. M. (2003) Development and application of cyclic shear apparatus for soil-structure interface. Chin. J. Geotech. Eng. 25 [2], 149-153 (in Chinese).

Zhang, G.; Zhang, J. M. (2004) Experimental study on monotonic behavior of interface between soil and structure. Chin. J. Geotech. Eng. 26 [1], 21-25 (in Chinese).

Fahey, M.; Carter, J. P. (1993) A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model. Can. Geotech. J. 30 [2], 348-362. https://doi.org/10.1139/t93-029

Tomlinson, M. J.; Woodward, J. (1977). Pile design and construction practice, Fourth Edition. A View Point Publications, London.

Chandler, R. J. (1968) The shaft friction of piles in cohesive soils in terms of effective stress. Civil Eng and Public Works Review. 63 [738], 48-51.

Focht, J.; Vijayvergiya, V. (1972) A new way to predict capacity of piles in clay. Proc. 4th Offshore Technology Conf. vol. 2, 865-874. https://doi.org/10.4043/1718-MS PMid:4205441

Mayne, P. W.; Kulhawy, F. H. (1982) K0-OCR relationships in soil. J. Geotech. Eng. Div. 108 [6], 851-872.

Ruiz, M. E. (2005). Study of axially loaded post grouted drilled shafts using CPT based load transfer curves. Master Thesis, Civil Engineering. University of Puerto Rico.

Mayne, P. W.; Schneider, J. A. (2001) Evaluating axial drilled shaft response by seismic cone. Foundations and ground improvement, Geotechnical Special Publication. 113, 655-669.

Kulhawy, F. H. (1984) Limiting Tip and Side Resistance : fact or fallacy. Proc. Conf. on Analysis and Design of Pile Foundations. ASCE Convention, San Francisco, California. 80-98.

Wang, W. B.; Yang, M. (2005) Elasto-plastic analysis for vertical pile based on extended compatibility of deformation. Chin. J. Geotech. Eng. 27 [12], 1442-1446 (in Chinese).

Publicado

2019-06-30

Cómo citar

Zhao, C. F., Wu, Y., Zhao, C., Zhang, Q. Z., Liu, F. M., & Liu, F. (2019). Resistencia de la superficie lateral del pilote a la descarga y a la degradación del módulo cortante en suelos arenosos. Materiales De Construcción, 69(334), e185. https://doi.org/10.3989/mc.2019.03718

Número

Sección

Artículos