Revestimientos protectores de silano organofuncional a base de ácidos grasos para el hormigón

Autores/as

DOI:

https://doi.org/10.3989/mc.2021.03420

Palabras clave:

Ácidos grasos, Procesos sol-gel, Silanos modificados orgánicamente, Hormigón, Revestimientos protectores

Resumen


En la naturaleza, los ácidos grasos se encuentran en forma de ésteres con glicerina (grasas) y son ampliamente usados para la fabricación de jabones, pinturas de aceite, medicamentos y productos cosméticos. En este estudio fue de particular interés la aplicación de derivados organosilíceos del ácido oleico para la producción de un revestimiento que cubriera la superficie del hormigón y lo protegiera de la permeación del agua. Como resultado de la silanización propuesta, la superficie del hormigón adquirió carácter hidrofóbico con los ángulos de mojado hasta 115º, y su capacidad de absorción se redujo hasta en un 93%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Dhir, R.K.; Hewlett, P.C.; Chan, Y.N. (1987) Near-surface characteristics of concrete: assessment and development of in situ test methods. Mag. Concr. Res. 39, 183-195. https://doi.org/10.1680/macr.1987.39.141.183

Song, H-W.; Lee, C-H.; Ann, K.Y. (2008) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem. Concr. Compos. 30, 113-121. https://doi.org/10.1016/j.cemconcomp.2007.09.005

Meyer, A. (1987) Importance of the surface layer for the durability of concrete structures. ACI Spec. Publ. 100, 49-62.

Basheer, P.A.M.; Basheer, L.; Cleland, D.J.; Long, A.E. (1997) Surface treatments for concrete: assessment methods and reported performance. Constr. Build. Mater. 11 [7-8], 413-429. https://doi.org/10.1016/S0950-0618(97)00019-6

Doran, D.; Cather, B. (2013) Construction Materials Reference Book, Routledge, Taylor & Francis Group, New York, (2013). https://doi.org/10.4324/9780080940380

Pan, X.; Shi, Z.; Shi, C.; Ling, T-C.; Li, N. (2017) A review on concrete surface treatment Part I: Types and mechanisms. Constr. Build. Mater. 132, 578-590. https://doi.org/10.1016/j.conbuildmat.2016.12.025

Woo, R.S.C.; Zhu, H.; Chow, M.M.K.; Leung, C.K.Y.; Kim, J-K. (2008) Barrier performance of silane-clay nanocomposite coatings on concrete structure. Compos. Sci. Technol. 68 [14], 2828-2836. https://doi.org/10.1016/j.compscitech.2007.10.028

Anderson, R.; Arkles, B.; Larson, G.L. (1987) Silicon compounds register and review, Petrarch Product Catalog, Bristol, (1987).

Attanayaka, U.; Ng, S.Y.C.; Aktan, H. (2002) Criteria and benefits of penetrating sealants for concrete bridge decks, Michigan Department of Transportation, (2002).

A guide to silane solutions from Dow Corning, Dow Corning, (2005).

Petrie, E. (2007) Handbook of adhesives and sealants, McGraw Hill, New York, (2007).

Carter, P.D. (1994) Evaluation of dampproofing performance and effective penetration depth of silane sealers in concrete. ACI Spec. Publ. 151, 95-118.

Christodoulou, C.; Goodier, C.I.; Austin, S.A.; Webb, J.; Glass, G.K. (2013) Long-term performance of surface impregnation of reinforced concrete structures with silane. Constr. Build. Mater. 48, 708-716. https://doi.org/10.1016/j.conbuildmat.2013.07.038

Li, J., Yi, Z., Xie, Y. (2012) Progress of silane impregnating surface treatment technology of concrete structure. Mater. Rev. 26 [3], 120-125.

Pan, X.; Shi, Z.; Shi, C.; Ling, T.-C.; Li, N. (2017) A review on surface treatment for concrete - Part 2: Performance. Constr. Build. Mater. 133, 81-90. https://doi.org/10.1016/j.conbuildmat.2016.11.128

Dai, J-G., Akira, Y., Wittmann, F.H., Yokota, H., Zhang P. (2010) Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks. Cem. Concr. Comp. 32, 101-109. https://doi.org/10.1016/j.cemconcomp.2009.11.001

Zhan, H., Wittmann, F.H., Zhao, T. (2003). Chloride barrier for concrete in saline environment established by water repellent treatmentt. Restorat. Build. Monum. 9, 535-550. https://doi.org/10.1515/rbm-2003-5792

Wong, H.S.; Barakat, R.; Alhilali, A.; Saleh, M.; Cheeseman, C.R. (2015) Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 70, 9-20. https://doi.org/10.1016/j.cemconres.2015.01.005

Malinowski, R. (1977) Concretes and mortars in ancient aqueducts. In: Hist. Moments Concr. 1, 66-76.

Fiori, C., Vandini, M., Prati, S., Chiavari, G. (2009) Vaterite in the mortars of a mosaic in the Saint Peter Basilica, Vatican (Rome). J. Cult. Herit. 10, 248-257. https://doi.org/10.1016/j.culher.2008.07.011

Lagazzo, A.; Vinci, S.; Cattaneo, C.; Botter, R. (2016) Effect of fatty acid soap on microstructure of lime-cement mortar. Constr. Build. Mater. 116, 384-390. https://doi.org/10.1016/j.conbuildmat.2016.04.122

Nunes, C.; Slížková, Z. (2014) Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment. Cem. Concr. Res. 61-62, 28-39. https://doi.org/10.1016/j.cemconres.2014.03.011

Hewlett, P.C., Liska M. (2019) Lea's Chemistry of Cement and Concrete, Elsevier (2019). https://doi.org/10.1016/B978-0-08-100773-0.00014-9

Cellat, K.; Beyhan, B.; Güngör, C.; Konuklu, Y.; Karahan, O.; Dündar, C.; Paksoy, H. (2015) Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy Build. 106, 156-163. https://doi.org/10.1016/j.enbuild.2015.05.035

Rozanna, D.; Chuah, T.G.; Salmiah, A.; Choong, T.S.Y.; Sa'ari, M. (2005) Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int. J. Green Energy 1, 495-513. https://doi.org/10.1081/GE-200038722

Justnes, H.; Østnor, T.A.; Barnils Vila, N. (2004) Vegetable oils as water repellents for mortars, In: Proceedings of the first international conference of Asian Concrete Federation, Chiang Mai, Thailand; 2, 689-98.

Szubert, K. (2018) Synthesis of organofunctional silane from rapeseed oil and its application as a coating material. Cellulose 25, 6269-6278. https://doi.org/10.1007/s10570-018-2018-6

Szubert, K.; Maciejewski, H. (2017) Corrosion protective agent, PL424015 (A1) (2017).

EN-197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization, Brussels, (2011).

Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 16, 12871-12890. https://doi.org/10.3390/ijms160612871 PMid:26057750 PMCid:PMC4490476

EN-1062-3, Paints and varnishes. Coating materials and coating systems for exterior masonry and concrete - Part 3: Determination of liquid water permeability, European Committee for Standardization, Brussels, (2008).

EN-1504-2, Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality assurance and conformity assessment - Part 2: Surface protection systems for concrete, European Committee for Standardization, Brussels, (2004).

Baltazar, L.; Santana, J.; Lopes, B.; Rodrigues, M.P.; Correia, J.R. (2014) Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture. Constr. Build. Mater. 70, 191-200. https://doi.org/10.1016/j.conbuildmat.2014.07.071

Publicado

2021-03-10

Cómo citar

Szubert, K. . (2021). Revestimientos protectores de silano organofuncional a base de ácidos grasos para el hormigón. Materiales De Construcción, 71(341), e238. https://doi.org/10.3989/mc.2021.03420

Número

Sección

Artículos

Datos de los fondos

Narodowym Centrum Nauki
Números de la subvención DEC-2013/09/D/ST5/03845