Impacto de la incorporación de fibras y del método de compactación en las propiedades de hormigones porosos

Autores/as

DOI:

https://doi.org/10.3989/mc.2021.08020

Palabras clave:

Hormigón, Permeabilidad, Propiedades mecánicas, Vibración, Refuerzo de fibras

Resumen


Este artículo trata sobre la posibilidad de mejorar las propiedades de hormigones porosos mediante la incorporación de distintos tipos de fibras, así como del estudio del efecto de vibraciones de corta duración en dichas propiedades en comparación con el método de compactación realizado con listón de madera y mazo. Se prepararon diez mezclas de hormigón, cinco de ellas compactadas con listón de madera y mazo, y 5 con vibración de corta duración. Se midió la densidad, porosidad, permeabilidad y propiedades mecánicas de los hormigones endurecidos. Se concluyó que las mezclas compactadas mediante vibración de corta duración mostraron mejores propiedades mecánicas debido a la formación de una capa viscosa en la superficie de contacto entre el árido y la matriz cementante durante el proceso de compactación, así como a las propiedades porosas resultantes. La adición de fibras afectaba negativamente a la porosidad y la permeabilidad de las mezclas, pero mejoraba las propiedades mecánicas. El efecto positivo de la adición de fibras era más evidente en las mezclas compactadas mediante vibración.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Putman, B.J.; Neptune, A.I. (2011) Comparison of test specimen preparation techniques for pervious concrete pavements. Constr. Build. Mater. 25 [8], 3480-3485. https://doi.org/10.1016/j.conbuildmat.2011.03.039

Schaefer, V.R.; Wang, K.; Suleiman, M.T.; Kevern, J. (2006) Mix design development for pervious concrete in cold climates. Technical report, National Concrete Pavement Technology Center, Iowa, USA.

Sonebi, M.; Bassuoni, M.; Yahia, A. (2016) Pervious concrete: Mix design, properties and applications. RILEM Tech. Lett. 10, 109-115. https://doi.org/10.21809/rilemtechlett.2016.24

Yang, Z.; Ma, W.; Shen, W.; Zhou, M. (2008) The aggregate gradation for the porous concrete pervious road base material. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 23, 391-394. https://doi.org/10.1007/s11595-007-3391-4

Tennis, P.D.; Leming, M.L.; Akers, D.J. (2004) Pervious concrete pavements, EB302.02, Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association.

Rangelov, M.; Somayeh, N.; Haselbach, L.; Englund, K. (2016) Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 126, 875-885. https://doi.org/10.1016/j.conbuildmat.2016.06.035

Netinger Grubeša, I.; Barišić, I.; Ducman, V.; Korat, L. (2018) Draining capability of single-sized pervious concrete. Constr. Build. Mater. 169, 252-260. https://doi.org/10.1016/j.conbuildmat.2018.03.037

Bentur, A.; Mindess, S. (2007) Fiber reinforced cementitious composites. Modern concrete technology series, CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781482267747

Mobasher, B. (2011) Mechanics of fiber and textile reinforced cement composites, CRC Press, Taylor & Francis Group, Boca Rotan, London and New York. https://doi.org/10.1201/b11181 PMid:21228776

Johnston, C.D. (2010) Fiber-reinforced cements and concretes, Taylor & Francis, London and New York.

Amde, A.M.; Rogge, S. (2013) Development of high quality pervious concrete specifications for Maryland conditions. Final Report, MD-13-SP009B4F.

Kevern, J. T.; Biddle, D.; Cao, Q. (2014). Effects of macrosynthetic fibers on pervious concrete properties. J. Mater. Civil. Eng. 27 [9], 06014031-1-06014031-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001213

Kevern, J.; Schaefer, V.; Wang, K.; Suleiman, M. (2008) Pervious concrete mixture proportions for improved freeze-thaw durability. J. ASTM Int. 5 [2], 1-12. https://doi.org/10.1520/JAI101320

Kevern, J.T.; Wang, K.; Schaefer, V.R. (2008) Pervious concrete in severe exposures: Development of pollution-reducing pavement for northern cities. ACI Concr. Int. Mag. 43-49.

Rehder, B.; Banh, K.; Neithalath, N. (2014) Fracture behavior of pervious concretes: The effects of pore structure and fibers. Eng. Fract. Mech. 118, 1-16. https://doi.org/10.1016/j.engfracmech.2014.01.015

Liu, R.; Chi, Y.; Jiang, Q.; Meng, X.; Wu, K.; Li, S. (20121 Physical and mechanical properties of pervious concrete with multi-admixtures. Mag. Concr. Res. 73 [9], 448-463. https://doi.org/10.1680/jmacr.19.00145

Shu, X.; Huang, B.; Wu, H.; Dong, Q.; Burdette, E.G. (2011) Performance comparison of laboratory and field produced pervious concrete mixtures. Constr. Build. Mater. 25 [8], 3187-3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002

Rizvi, R.; Tighe, S.L.; Henderson, V.; Norris, J. (2009) Laboratory sample preparation techniques for pervious concrete. Transportation Research Record Journal of the Transportation Research Board 09-1962:16 (2009).

Kevern, J.T.; Schaefer, V.R.; Wang, K. (2009). Evaluation of pervious concrete workability using gyratory compaction. J. Mater. Civil. Eng. 21 [12], 764-770. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(764)

Li, L.G.; Feng, J.J.; Zhu, J.; Chu, S.H.; Kwan, A.K.H. (2019) Pervious concrete: Effects of porosity on permeability and strength. Mag. Concr. Res. 73 [2], 69-79. https://doi.org/10.1680/jmacr.19.00194

Zhuge, Y. (2008). Comparing the performance of recycled and quarry aggregate and their effect on the strength of permeable concrete. In Futures in Mechanics of Structures and Materials Toowoomba, Australia. 343-349.

Juradin, S.; Ostojić-Škomrlj, N.; Brnas, I.; Prolić, M. (2020) Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete. Adv. Concr. Constr. 10 [3], 211-220.

Zhong, R.; Leng, Z.; Poon, C-S. (2018) Research and application of pervious concrete as a sustaninable pavement material: A state-of-the-art and state-of-the-practice review, Constr. Build. Mater. 183, 544-553. https://doi.org/10.1016/j.conbuildmat.2018.06.131

Tabatabaeian, M.; Khaloo, A.; Khaloo, H. (2019) An innovative high performance pervious concrete with polyester and epoxy resins. Constr. Build. Mater. 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820

Zhong, R.; Wille, K. (2015) Material Design and Characterization of High Performance Pervious Concrete. Constr. Build. Mater. 98, 51-60. https://doi.org/10.1016/j.conbuildmat.2015.08.027

Tang, C.W.; Cheng, C-K.; Tsai, C-Y. (2019) Mix design and mechanical properties of high-performance pervious concrete. Mater. 12 [16], 2577. https://doi.org/10.3390/ma12162577 PMid:31412556 PMCid:PMC6720626

Kharbikar, F.V.; Pathak, S. (2017) Enhancing the strength of pervious concrete using polypropylene fiber, IJARIIE-ISSN( O)-2395-4396. 3 [4], 235-246.

Thakre, N.; Rajput, H.; Saxena, J.; Mitangale, H. (2014) Comparative Study on Strength and Permeability of Pervious Concrete by Using Nylon and Polypropylene Fiber, IJCAT Int. J. Comput. Technol. 1 [4], 141-148.

Hesami, S.; Ahmadi, S.; Nematzadeh, M. (2014) Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 53, 680-691. https://doi.org/10.1016/j.conbuildmat.2013.11.070

Patidar, R.; Yadav, S. (2017) Experimental Study Of Pervious Concrete With Polypropylene Fiber. Int. Res. J. Eng. Technol. (IRJET). 4 [12], 22-27.

Pils, S.E.; Oliveira, P.; Regoso, F.; Paulon, V.A.; Costella, M.F. (2019) Pervious concrete: study of dosage and polypropylene fibers addiction. Rev. IBRACON Estrut. Mater. 12 [1], 101-121. https://doi.org/10.1590/s1983-41952019000100009

Oni, B.; Xia, J.; Liu, M. (2020) Mechanical properties of pressure moulded fibre reinforced pervious concrete pavement brick. Case Stud. Constr. Mater. 13, e00431. https://doi.org/10.1016/j.cscm.2020.e00431

Zhong, R.; Wille, K. (2018) Influence of matrix and pore system characteristics on the durability of pervious concrete. Constr. Build. Mater. 162, 132-141. https://doi.org/10.1016/j.conbuildmat.2017.11.175

AlShareedah, O.; Nassiri, S.; Dolan, D. (2019) Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Constr. Build. Mater. 207, 17-27. https://doi.org/10.1016/j.conbuildmat.2019.02.111

FORTA, Technical Report, FRP - Fiber Reinforced Pervious, 2013. http://www.tagroupkuwait.com/uploads/downloads/pervious_tech_report.pdf.

Novak, J.; Kohoutkova, A.; Chylik, R.; Trtik, T. (2020) Study on pervious recycled aggregate fiber-reinforced concrete for airfield pavement, IOP Conf. Series: Materials Science and Engineering 770, 8th Global Conference on Materials Science and Engineering (CMSE2019). 12-15 November 2019, Sanya, China, (2020). https://iopscience.iop.org/article/10.1088/1757-899X/770/1/012040/meta. https://doi.org/10.1088/1757-899X/770/1/012040

(2019a) EN 12350-2:2019 Testing fresh concrete - slump test.

(2019b) EN 12390-2:2019 Testing hardened concrete - Part 2: Making and curing specimens for strength tests.

(2019c) EN 12390-7:2019 Testing hardened concrete - Part 7: Determination of density.

(2019d) EN 12390-3:2019 Testing hardened concrete - Part 3: Compressive strength of test.

(2009) EN 12390-6:2009 Testing hardened concrete - Part 6: Tensile splitting strength of test specimens.

Huang, B.; Mohammad, L.; Raghavendra, A.; Abadie, C. (1999) Fundamentals of Permeability in Asphalt Mixtures. J. Assoc. Asph. Pav. Technol. 68, 479-500.

Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. (2010) Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 24 [5], 818- 823. https://doi.org/10.1016/j.conbuildmat.2009.10.025

Sandoval, G.F.B.; Galobardes, I.; Teixeira, R.S.; Toralles, B.M. (2017) Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Stud. Constr. Mater. 7, 317-328. https://doi.org/10.1016/j.cscm.2017.09.001

Krstulović, P. (2000) Properties and technology of concrete. Faculty of Civil Engineering, University of Split, Institut IGH, Split (in Croatian).

Andrew, I.; Bradley, J.P. (2010) Effect of aggregate size and gradation on pervious concrete mixtures. ACI Mat. J. 107 [6], 625-631. https://doi.org/10.14359/51664050

ACI (American Concrete Institute) (2010) (Reapproved 2011) ACI 522R‐10: Report on pervious concrete. American Concrete Institute, Farmington Hills, MI, USA.

Mahalingam, R.; Mahalingam, S. V. (2016). Analysis of pervious concrete properties. Građevinar. 68 [6], 493-501.

Juradin, S.; Krstulovic, P. (2012) The vibration rheometer: the effect of vibration on fresh concrete and similar materials. Mater. Werks. 43 [8], 733-742. https://doi.org/10.1002/mawe.201200769

Patil, P.S.; Sonar, I.P.; Shinde, S. (2017) No fine concrete. Int. J. Concr. Technol. 3 [2], 1-13.

Kim, H.H.; Kim, C.S.; Jeon, J.H.; Park, C.G. (2016) Effects on the physical and mechanical properties of porous concrete for plant growth of blast furnace slag, natural jute fiber, and styrene butadiene latex using a dry mixing manufacturing process. Mater. 9 [2], 84. https://doi.org/10.3390/ma9020084 PMid:28787883 PMCid:PMC5456473

Geethanjali, S.; Manonmani, B.; Sowmya, P.; Suvetha, T.; Balakumar, V. (2020) Experimental study of pervious (no fine) concrete. Int. J. Sci. Eng. Res. 11 [3], 83-86. https://www.ijser.org/researchpaper/Experimental-study-of-Pervious-No-Fine-Concrete.pdf.

EN 1338:2004 Concrete paving blocks -- Requirements and test methods. (2004a)

EN 1339:2004 Concrete paving flags -- Requirements and test methods. (2004b)

Publicado

2021-06-04

Cómo citar

Juradin, S. ., Netinger-Grubeša, I. ., Mrakovčić, S. ., & Jozić, D. . (2021). Impacto de la incorporación de fibras y del método de compactación en las propiedades de hormigones porosos. Materiales De Construcción, 71(342), e245. https://doi.org/10.3989/mc.2021.08020

Número

Sección

Artículos