Impacto de la incorporación de fibras y del método de compactación en las propiedades de hormigones porosos
DOI:
https://doi.org/10.3989/mc.2021.08020Palabras clave:
Hormigón, Permeabilidad, Propiedades mecánicas, Vibración, Refuerzo de fibrasResumen
Este artículo trata sobre la posibilidad de mejorar las propiedades de hormigones porosos mediante la incorporación de distintos tipos de fibras, así como del estudio del efecto de vibraciones de corta duración en dichas propiedades en comparación con el método de compactación realizado con listón de madera y mazo. Se prepararon diez mezclas de hormigón, cinco de ellas compactadas con listón de madera y mazo, y 5 con vibración de corta duración. Se midió la densidad, porosidad, permeabilidad y propiedades mecánicas de los hormigones endurecidos. Se concluyó que las mezclas compactadas mediante vibración de corta duración mostraron mejores propiedades mecánicas debido a la formación de una capa viscosa en la superficie de contacto entre el árido y la matriz cementante durante el proceso de compactación, así como a las propiedades porosas resultantes. La adición de fibras afectaba negativamente a la porosidad y la permeabilidad de las mezclas, pero mejoraba las propiedades mecánicas. El efecto positivo de la adición de fibras era más evidente en las mezclas compactadas mediante vibración.
Descargas
Citas
Putman, B.J.; Neptune, A.I. (2011) Comparison of test specimen preparation techniques for pervious concrete pavements. Constr. Build. Mater. 25 [8], 3480-3485. https://doi.org/10.1016/j.conbuildmat.2011.03.039
Schaefer, V.R.; Wang, K.; Suleiman, M.T.; Kevern, J. (2006) Mix design development for pervious concrete in cold climates. Technical report, National Concrete Pavement Technology Center, Iowa, USA.
Sonebi, M.; Bassuoni, M.; Yahia, A. (2016) Pervious concrete: Mix design, properties and applications. RILEM Tech. Lett. 10, 109-115. https://doi.org/10.21809/rilemtechlett.2016.24
Yang, Z.; Ma, W.; Shen, W.; Zhou, M. (2008) The aggregate gradation for the porous concrete pervious road base material. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 23, 391-394. https://doi.org/10.1007/s11595-007-3391-4
Tennis, P.D.; Leming, M.L.; Akers, D.J. (2004) Pervious concrete pavements, EB302.02, Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association.
Rangelov, M.; Somayeh, N.; Haselbach, L.; Englund, K. (2016) Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 126, 875-885. https://doi.org/10.1016/j.conbuildmat.2016.06.035
Netinger Grubeša, I.; Barišić, I.; Ducman, V.; Korat, L. (2018) Draining capability of single-sized pervious concrete. Constr. Build. Mater. 169, 252-260. https://doi.org/10.1016/j.conbuildmat.2018.03.037
Bentur, A.; Mindess, S. (2007) Fiber reinforced cementitious composites. Modern concrete technology series, CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781482267747
Mobasher, B. (2011) Mechanics of fiber and textile reinforced cement composites, CRC Press, Taylor & Francis Group, Boca Rotan, London and New York. https://doi.org/10.1201/b11181 PMid:21228776
Johnston, C.D. (2010) Fiber-reinforced cements and concretes, Taylor & Francis, London and New York.
Amde, A.M.; Rogge, S. (2013) Development of high quality pervious concrete specifications for Maryland conditions. Final Report, MD-13-SP009B4F.
Kevern, J. T.; Biddle, D.; Cao, Q. (2014). Effects of macrosynthetic fibers on pervious concrete properties. J. Mater. Civil. Eng. 27 [9], 06014031-1-06014031-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001213
Kevern, J.; Schaefer, V.; Wang, K.; Suleiman, M. (2008) Pervious concrete mixture proportions for improved freeze-thaw durability. J. ASTM Int. 5 [2], 1-12. https://doi.org/10.1520/JAI101320
Kevern, J.T.; Wang, K.; Schaefer, V.R. (2008) Pervious concrete in severe exposures: Development of pollution-reducing pavement for northern cities. ACI Concr. Int. Mag. 43-49.
Rehder, B.; Banh, K.; Neithalath, N. (2014) Fracture behavior of pervious concretes: The effects of pore structure and fibers. Eng. Fract. Mech. 118, 1-16. https://doi.org/10.1016/j.engfracmech.2014.01.015
Liu, R.; Chi, Y.; Jiang, Q.; Meng, X.; Wu, K.; Li, S. (20121 Physical and mechanical properties of pervious concrete with multi-admixtures. Mag. Concr. Res. 73 [9], 448-463. https://doi.org/10.1680/jmacr.19.00145
Shu, X.; Huang, B.; Wu, H.; Dong, Q.; Burdette, E.G. (2011) Performance comparison of laboratory and field produced pervious concrete mixtures. Constr. Build. Mater. 25 [8], 3187-3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002
Rizvi, R.; Tighe, S.L.; Henderson, V.; Norris, J. (2009) Laboratory sample preparation techniques for pervious concrete. Transportation Research Record Journal of the Transportation Research Board 09-1962:16 (2009).
Kevern, J.T.; Schaefer, V.R.; Wang, K. (2009). Evaluation of pervious concrete workability using gyratory compaction. J. Mater. Civil. Eng. 21 [12], 764-770. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(764)
Li, L.G.; Feng, J.J.; Zhu, J.; Chu, S.H.; Kwan, A.K.H. (2019) Pervious concrete: Effects of porosity on permeability and strength. Mag. Concr. Res. 73 [2], 69-79. https://doi.org/10.1680/jmacr.19.00194
Zhuge, Y. (2008). Comparing the performance of recycled and quarry aggregate and their effect on the strength of permeable concrete. In Futures in Mechanics of Structures and Materials Toowoomba, Australia. 343-349.
Juradin, S.; Ostojić-Škomrlj, N.; Brnas, I.; Prolić, M. (2020) Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete. Adv. Concr. Constr. 10 [3], 211-220.
Zhong, R.; Leng, Z.; Poon, C-S. (2018) Research and application of pervious concrete as a sustaninable pavement material: A state-of-the-art and state-of-the-practice review, Constr. Build. Mater. 183, 544-553. https://doi.org/10.1016/j.conbuildmat.2018.06.131
Tabatabaeian, M.; Khaloo, A.; Khaloo, H. (2019) An innovative high performance pervious concrete with polyester and epoxy resins. Constr. Build. Mater. 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820
Zhong, R.; Wille, K. (2015) Material Design and Characterization of High Performance Pervious Concrete. Constr. Build. Mater. 98, 51-60. https://doi.org/10.1016/j.conbuildmat.2015.08.027
Tang, C.W.; Cheng, C-K.; Tsai, C-Y. (2019) Mix design and mechanical properties of high-performance pervious concrete. Mater. 12 [16], 2577. https://doi.org/10.3390/ma12162577 PMid:31412556 PMCid:PMC6720626
Kharbikar, F.V.; Pathak, S. (2017) Enhancing the strength of pervious concrete using polypropylene fiber, IJARIIE-ISSN( O)-2395-4396. 3 [4], 235-246.
Thakre, N.; Rajput, H.; Saxena, J.; Mitangale, H. (2014) Comparative Study on Strength and Permeability of Pervious Concrete by Using Nylon and Polypropylene Fiber, IJCAT Int. J. Comput. Technol. 1 [4], 141-148.
Hesami, S.; Ahmadi, S.; Nematzadeh, M. (2014) Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 53, 680-691. https://doi.org/10.1016/j.conbuildmat.2013.11.070
Patidar, R.; Yadav, S. (2017) Experimental Study Of Pervious Concrete With Polypropylene Fiber. Int. Res. J. Eng. Technol. (IRJET). 4 [12], 22-27.
Pils, S.E.; Oliveira, P.; Regoso, F.; Paulon, V.A.; Costella, M.F. (2019) Pervious concrete: study of dosage and polypropylene fibers addiction. Rev. IBRACON Estrut. Mater. 12 [1], 101-121. https://doi.org/10.1590/s1983-41952019000100009
Oni, B.; Xia, J.; Liu, M. (2020) Mechanical properties of pressure moulded fibre reinforced pervious concrete pavement brick. Case Stud. Constr. Mater. 13, e00431. https://doi.org/10.1016/j.cscm.2020.e00431
Zhong, R.; Wille, K. (2018) Influence of matrix and pore system characteristics on the durability of pervious concrete. Constr. Build. Mater. 162, 132-141. https://doi.org/10.1016/j.conbuildmat.2017.11.175
AlShareedah, O.; Nassiri, S.; Dolan, D. (2019) Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Constr. Build. Mater. 207, 17-27. https://doi.org/10.1016/j.conbuildmat.2019.02.111
FORTA, Technical Report, FRP - Fiber Reinforced Pervious, 2013. http://www.tagroupkuwait.com/uploads/downloads/pervious_tech_report.pdf.
Novak, J.; Kohoutkova, A.; Chylik, R.; Trtik, T. (2020) Study on pervious recycled aggregate fiber-reinforced concrete for airfield pavement, IOP Conf. Series: Materials Science and Engineering 770, 8th Global Conference on Materials Science and Engineering (CMSE2019). 12-15 November 2019, Sanya, China, (2020). https://iopscience.iop.org/article/10.1088/1757-899X/770/1/012040/meta. https://doi.org/10.1088/1757-899X/770/1/012040
(2019a) EN 12350-2:2019 Testing fresh concrete - slump test.
(2019b) EN 12390-2:2019 Testing hardened concrete - Part 2: Making and curing specimens for strength tests.
(2019c) EN 12390-7:2019 Testing hardened concrete - Part 7: Determination of density.
(2019d) EN 12390-3:2019 Testing hardened concrete - Part 3: Compressive strength of test.
(2009) EN 12390-6:2009 Testing hardened concrete - Part 6: Tensile splitting strength of test specimens.
Huang, B.; Mohammad, L.; Raghavendra, A.; Abadie, C. (1999) Fundamentals of Permeability in Asphalt Mixtures. J. Assoc. Asph. Pav. Technol. 68, 479-500.
Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. (2010) Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 24 [5], 818- 823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
Sandoval, G.F.B.; Galobardes, I.; Teixeira, R.S.; Toralles, B.M. (2017) Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Stud. Constr. Mater. 7, 317-328. https://doi.org/10.1016/j.cscm.2017.09.001
Krstulović, P. (2000) Properties and technology of concrete. Faculty of Civil Engineering, University of Split, Institut IGH, Split (in Croatian).
Andrew, I.; Bradley, J.P. (2010) Effect of aggregate size and gradation on pervious concrete mixtures. ACI Mat. J. 107 [6], 625-631. https://doi.org/10.14359/51664050
ACI (American Concrete Institute) (2010) (Reapproved 2011) ACI 522R‐10: Report on pervious concrete. American Concrete Institute, Farmington Hills, MI, USA.
Mahalingam, R.; Mahalingam, S. V. (2016). Analysis of pervious concrete properties. Građevinar. 68 [6], 493-501.
Juradin, S.; Krstulovic, P. (2012) The vibration rheometer: the effect of vibration on fresh concrete and similar materials. Mater. Werks. 43 [8], 733-742. https://doi.org/10.1002/mawe.201200769
Patil, P.S.; Sonar, I.P.; Shinde, S. (2017) No fine concrete. Int. J. Concr. Technol. 3 [2], 1-13.
Kim, H.H.; Kim, C.S.; Jeon, J.H.; Park, C.G. (2016) Effects on the physical and mechanical properties of porous concrete for plant growth of blast furnace slag, natural jute fiber, and styrene butadiene latex using a dry mixing manufacturing process. Mater. 9 [2], 84. https://doi.org/10.3390/ma9020084 PMid:28787883 PMCid:PMC5456473
Geethanjali, S.; Manonmani, B.; Sowmya, P.; Suvetha, T.; Balakumar, V. (2020) Experimental study of pervious (no fine) concrete. Int. J. Sci. Eng. Res. 11 [3], 83-86. https://www.ijser.org/researchpaper/Experimental-study-of-Pervious-No-Fine-Concrete.pdf.
EN 1338:2004 Concrete paving blocks -- Requirements and test methods. (2004a)
EN 1339:2004 Concrete paving flags -- Requirements and test methods. (2004b)
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.