Revisión sobre residuos NORM, cementos y hormigones

Autores/as

DOI:

https://doi.org/10.3989/mc.2021.13520

Palabras clave:

Residuos NORM, Cementos, Hormigones, Geopolymeros, Radioactividad, Comportamiento

Resumen


La utilización de residuos y/o subproductos industriales, como materiales alternativos, en la preparación de materiales de construcción, es una actividad cada día más vigente y normal; y está encaminada a conseguir una construcción más sostenible y alcanzar la deseada Economía Circular. Sin embargo, deben tomarse todas las precauciones necesarias de modo que la incorporación y utilización de estos materiales no suponga una nueva amenaza a la salud de la población y al medio ambiente. Estos residuos y/o subproductos industriales pueden estar enriquecidos (por el propio proceso de su generación) de metales pesados, y otros componentes químicos no deseables; además de altos contenidos de radioactividad natural, lo que puede condicionar negativamente su empleo como materiales alternativos y/o secundarios. Es por ello, que es preciso un estudio muy profundo y realista de dichos residuos y subproductos industriales previo a su utilización en la preparación de materiales de construcción. En este artículo de revisión o estado del conocimiento se hace un repaso a los conceptos básicos de radioactividad y radioactividad natural, centrando el estudio en aquellos residuos y/o subproductos industriales que son residuos NORM (Naturally Occurring Radioactive Materials) y que se emplean en la preparación de cementos y hormigones. Se aportan datos radiológicos actualizados sobre estos residuos y subproductos industriales (ej. cenizas volantes de centrales, térmicas, escorias metalúrgicas, residuos de bauxita, fosfoyeso), y también se dan datos radiológicos de otros materiales como calizas, yesos, etc. Igualmente, se presentan resultados recientes sobre concentraciones de actividad de radionucleidos de cementos y hormigones en base Portland, con distinta composición y contenido en residuos NORM. Se incide en el papel de los áridos naturales en el comportamiento radiológico final de los hormigones. Se aborda, igualmente el comportamiento radiológico de cementos y hormigones alternativos al Portland como son los activados alcalinamente y geopolímeros.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Mindess, S. (2019) Sustainability of Concrete. Chapter 1. Sustainability of Concrete. Modern Concrete Techonology Book 17. Ed.: Routledge. https://doi.org/10.1016/B978-0-08-102616-8.00001-0

Circular Economy. UE: https://ec.europa.eu/commission/priorities/jobs-growth-and-investment/towards-circular-economy_es, 2016.

ONU. Sustainability Development Goals. Paris. 2015. https://www.agenda2030.gob.es/

Roadmap 2020. European Commission. https://www.roadmap2050.eu.

García-Díaz. I.; Puertas, F. (2011) Empleo de residuos cerámicos como materia prima alternativa en la fabricación de cemento Portland (in spanish). Monografías del IETcc. Ed. CSIC.

Savić, A.; Martinović, S.; Vlahović, M.; Volkov-Husović, T. (2020) Effects of waste sulfur content on properties of self-compacting concrete. Mater. Construcc. 70 [338], e216, https://doi.org/10.3989/mc.2020.06919

Gonzalez-Triviño, I.; Pascual-Cosp, J.; Moreno, B.; Benitez-Guerrero, M. (2019) Manufacture of ceramics with high mechanical properties from red mud and granite waste. Mater. Construcc. 69 [333], e180. https://doi.org/10.3989/mc.2019.03818

Scrivener, K.L.; John, V. M.; Gartner, E.M. (2016) Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement based materials industry. United Nations & Environment Programm, 2016. https://doi.org/10.1016/j.cemconres.2018.03.015

Mora, J.C.; Baeza, A.; Robles, B.; Sanz, J. (2016) Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills. J. Haz. Mat. 310, 161-169. https://doi.org/10.1016/j.jhazmat.2016.02.039 PMid:26921509

Labrincha, J.; Puertas, F.; Schroeyers, W.; Kovler, K.; Pontikes, Y.; Nuccetelli, C.; Krivenko, P.V.; Kovalchuk, O.; Petropavlovsky, O.; Komljenovic, M.; Fidanchevski, E.; Wiegers, R.; Volceanov. E.; Gunay, E.; Sanjuán, M. A.; Ducman, V.; Angjusheva, B.; Bajare, D.; Kovacs, T.; Bator, G.; Schreurs, S.; Aguiar, J.; Provis, J.L. (2017) From NORM by-products to building materials. In Naturally Ocurring Radiactive Materials in Construction. Chapter 7. Ed. W. Schroeyers. Elservier, 183-252. https://doi.org/10.1016/B978-0-08-102009-8.00007-4

Martín Matarranz, J.L. (2013) Riesgo Radiológico de las industrias no nucleares. Ph. D Thesis. Universidad de Cantabria.

Kovler. K.; Fridman, H.; Michalik, B.; Schroeyers, W.; Tsapalov, A.; Antropov, S.; Bituh, T.; Nicolaides, D. (2017) Basic aspects of natural radioactivity. In Naturally Ocurring Radiactive Materials in Construction. Ed. W. Schroeyers. Elservier. Chapter 3. 13-16. https://doi.org/10.1016/B978-0-08-102009-8.00003-7

Piedecausa García, B.; Chinchón Payá, S.; Morales, M.A.; Sanjuán Barbudo, M.A. (2011) Radiactividad natural de los materiales de construcción. Aplicación al hormigón. Parte II. Radiación interna: Gas radón. Cemento y Hormigón. 946, 34-50.

Pastor, A.; Dovorzhak, A.; Mora, J.C. (2016) Hacia un inventario español de industrias generadoras de residuos NORM. Radioprotección. 86, 28-32.

Orden IET/1946/2013, de 17 de octubre, por la que se regula la gestión de los residuos generados en las actividades que utilizan materiales que contienen radionucleidos naturales. 23 de octubre de 2013 (in spanish).

Allam, M.E.; Bakhoum, E.S.; Gara, G.L.K. (2014) Re-use of granites sludge in producing Green concrete. ARPN. J. Eng. Appl. Sci. 9 [12], e2737. 2731-2737.

Condomines, M.; Hemond, C.; Allègre, C. (1988) UThRa radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 90 [3], 243-262. https://doi.org/10.1016/0012-821X(88)90129-X

Plant, J.A.; Saunders, A. D. (1996) The Radioactive Earth. Rad. Protec. Dosim. 68 [1-2], 25-36. https://doi.org/10.1093/oxfordjournals.rpd.a031847

Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C.; Pachón, A.; Carmona-Quiroga, P.M.; Argiz, C.; Sanjuán, M.A.; Puertas, F. (accepted 2021) Effect of particle size and composition of granitic sands on the radiological behavior of mortars. Bol. Soc. Esp. Cer. Vid. Available online 2 June 2021. https://doi.org/10.1016/j.bsecv.2021.05.001

Kovacs, T.; Bator, G.; Schroeyers, W.; Labrincha, J.; Puertas, F.; Hegedus, M.; Nicolaides, D.; Sanjuán, M.A.; Krivenko, P.V.; Grubesa, I.N.; Sas, Z.; Michalic, B.; Anagnostakis, M.; Barisic, I.; Nuccetelli, C.; Trevisi, R.; Croymans, T.; Schreurs, S.; Todorovic, N.; Vaičiukynienė-Palubinskaitė, D.; Bistrickaitė, R.; Tkaczyk, A.; Kovler, K.; Wiegers, R.; P.V.; Doherty, R. (2017) From raw materials to NORM by-products. In Naturally Ocurring Radiactive Materials in Construction. Chapter 6. Ed. W. Schroeyers. Elservier. 135-182. https://doi.org/10.1016/B978-0-08-102009-8.00006-2

EN-197-1: (2011). Part 1: Composition, specifications and conformity criteria for common cements.

Puertas, F.; Blanco-Varela, M. T.; Palomo, A.; Vázquez, T. (1988) Reactivity and burnability of raw mixes made with crystallized blastfurnace slags. Part I. and Part II. Zement-Kalk-Gips; 41, (389-402) and (628-631).

Puertas, F.; García-Díaz, I.; Palacios, M.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cem. Concr. Comp. 32 [3], 175-186 https://doi.org/10.1016/j.cemconcomp.2009.11.011

Blanco-Varela, M. T.; Puertas, F.; Palomo, A.; Vázquez, T.; Artola, P.; Alfaro, L. (2000) Aptitud a la cocción de crudos de cemento Portland usando Paval como materia prima. Cemento y Hormigón (in Spanish) 809, 358-377.

Puertas, F.; Blanco-Varela, M.T. (2004). Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties. Mater. Construcc. 54 [274], 51-64. https://doi.org/10.3989/mc.2004.v54.i274.232

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Robayo-Salazar, R.; Mejía de Gutierrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191 https://doi.org/10.3989/mc.2019.06618

Pacheco-Torgal, F.; Labrincha, J.A.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. (Eds.). (2015) Handbook of Alkali-activated cements, mortars and concretes. Woodhead Publishing Series in Civil and Structural Engineering. https://doi.org/10.1533/9781782422884.1 PMid:25842101

Provis, J.L.; van Deventer, J.J. (Eds). (2014) Alkali Activated Materials. State of the Art Report, ILEM TC 224-AAM. Springer. https://doi.org/10.1007/978-94-007-7672-2

Shi, C.; Krivenko, P.; Roy, D. (2006) Alkali-Activated Cements and Concretes. Taylor and Francis, London and New York. https://doi.org/10.4324/9780203390672

Shi, C.; Fernández Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res., 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag cements. Mechanical strength and paste characterisation. Cem. Concr. Res., 57, 95-104. https://doi.org/10.1016/j.cemconres.2013.12.005

Torres-Carrasco, M.; Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074

Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361-375.

Shi, C.; Shi, Z.; Hu, X.; Zhao, R.; Chong, L. (2015) A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 48, 621-628. https://doi.org/10.1617/s11527-014-0505-2

Pérez-Cortes, P.; Escalante-García, J.I. (2020) Alkali activated metakaolin with high limestone contents-Statistical modeling of strength and environmental and cost analyses. Cem. Concr. Comp. 106, 103450. https://doi.org/10.1016/j.cemconcomp.2019.103450

Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2

Torres-Carrasco, M.; Puertas, F. (2017) Waste glass as a precursor in alkaline activation: chemical process and hydration products. Construc. Build. Mat. 139, 342-354. https://doi.org/10.1016/j.conbuildmat.2017.02.071

Payá, J.; Agrela, F.; Rosales, J.; Martín Morales, M.; Borrachero, M.V. (2019) Application of alkali-activated industrial waste. New Trends Eco-effic. Recyc. Concr. 357-424. https://doi.org/10.1016/B978-0-08-102480-5.00013-0

Mas, M.A.; Tashima, M.M.; Payá, J.; Borrachero, M.V.; Soriano, L.; Monzó, J.M. (2015) A binder from alkali activation of FCC waste: Use in roof tiles fabrication. Key Eng. Mat. 668, 411-418. https://doi.org/10.4028/www.scientific.net/KEM.668.411

Puertas, F.; Barba, A.; Gazulla, M.F.; Gómez, M.P.; Palacios, M.; Martínez-Ramírez, S. (2006) Ceramic wastes as raw materials in pórtland cement clinker fabrication: characterization and alkaline activation. Mater. Construcc. 56 [281], 73-84. https://doi.org/10.3989/mc.2006.v56.i281.94

Burciaga-Díaz, O.; Durón-Sifuentes, M.; Díaz-Guillén, J.A.; Escalante-García, J.I. (2020) Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem. Concr. Comp. 107, 103492. https://doi.org/10.1016/j.cemconcomp.2019.103492

Alonso, M.M.; Gascó, C.; Martín Morales, M.; Suárez-Navarro, J.A.; Zamorano, M.; Puertas, F. (2019) Olive Biomas ash as an alternative activator in geopolymer formation: A study of strenth, radiology and leaching behaviour. Cem. Concr. Comp. 104, 103384. https://doi.org/10.1016/j.cemconcomp.2019.103384

de Moraes Pinheiro, S.M.; Font, A.; Soriano, L.; Tashima, M.M.; Monzó, J.M.; Borrachero, M.V.; Payá, J. (2018) Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construc. Build. Mat. 178, 30. 327-338. https://doi.org/10.1016/j.conbuildmat.2018.05.157

Deloitte (2017) Study on Resource Efficient Use of Mixed Wastes, Improving of construction and demolition waste - Final Report. Prepared for the 631 European Commission, DG ENV [31] DWC.

Pellegrino, C.; Faleschini, F.; Meyer, C. (2019) Recycled Materiales in Concrete, Chapter 2. Sustainability of Concrete. Ed. Pierre-Claude AÍtcin, Sidney Mindess, Modern Concrete Technology 17. https://doi.org/10.1016/B978-0-08-102616-8.00002-2

Zhang, L.W.; Sojobi, A.O.; Kodur, V.K.R.; Liew, K.M. (2019) Effective utilization and recycling of mixed recycled aggregates for a greener environment. J. Clean. Prod. 236, 117600. https://doi.org/10.1016/j.jclepro.2019.07.075

Suarez-Navarro, J.A.; Lanzón, M.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Puertas, F. (2019). Radiological behaviour of pigments and water repellents in cement-based mortars. Construc. Build. Mat. 225, 879-885. https://doi.org/10.1016/j.conbuildmat.2019.07.271

I.A.E.A. Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Tech. Reports Ser. 419. Vienna, Austria 419. (2003).

CEN/TC 351. Construction products: Assessment of release of dangerous substances. Radiation from construction products - Dose assessment and classifications of emitted gamma radiation. (2013).

Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.

Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. (2020) Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Rad. Phys. Chem. 171, 108709. https://doi.org/10.1016/j.radphyschem.2020.108709

Suárez-Navarro, J. A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzón, M.; Puertas, F. (2018) Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radi. Isot. 142, 1-7. https://doi.org/10.1016/j.apradiso.2018.09.019 PMid:30245436

Argiz, C.; Menéndez, E.; Moragues, A.; Sanjuán, M.A. (2015) Fly ash characteristics of Spanish coal-fired power plants. Afinidad. 72 [572], 269-277. http://www.raco.cat/index.php/afinidad/article/view/305569/395407.

Skibsted, J.; Snellings, R. (2019) Reactivity of supplementary cementitious Materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 https://doi.org/10.1016/j.cemconres.2019.105799

Mora, J.C.; Robles, B.; Corbacho, J.A.; Gascó, C.; Gázquez, M.J. (2011). Modelling the behaviour of 210Po in high temperatura processes. J. Environ. Radioac. 102 [5], 520-526. https://doi.org/10.1016/j.jenvrad.2010.10.006 PMid:21093128

Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. (2019) Processing and uses of fly ash addressing radioactivity (critical review), Chemosph. 216, 866-88. https://doi.org/10.1016/j.chemosphere.2018.10.112 PMid:30390998

Zielinski, R.A.; Finkelman, R.B. (1997) Radioactive elements in coal and fly ash: abundance, forms, and environmental significance, US Geological Survey, 2327-6932. https://doi.org/10.3133/fs16397

World Nuclear Association. Naturally Occuring Radioactive Materials (july, 2015). https://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/naturally-occurring-radioactive-materials-norm.aspx.

Karangelos, D.J.; Petropoulos, N.P.; Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E. (2004) Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plant. J. Env. Rad. 77 [3], 233-246. https://doi.org/10.1016/j.jenvrad.2004.03.009 PMid:15381319

Mora, J.C.; Baeza, A.; Robles, B.; Corbacho, J.A.; Cancio, D. (2009). Behaviour of natural radionuclides in coal combustión. Radioprotec. 44 [5], 577-580. https://doi.org/10.1051/radiopro/20095106

Nuccetelli, C.; Pontikes, Y.; Leonardi, F.; Trevisi, R. (2015) New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour. Construc. Build. Mat. 82, 323-331. https://doi.org/10.1016/j.conbuildmat.2015.01.069

Kovler, K.; Haquin, G.; Manasherov, V.; Ne'eman, E.; Lavi, N. (2002) Natural radionuclides in building materials available in Israel. Build. Environ. 37 [5], 531-537. https://doi.org/10.1016/S0360-1323(01)00048-8

Piedecausa, B.; Chinchón-Payá, S.; Morales, M.A.; Sanjuán, M.A. (2011) Radioactividad natural de los materiales de construcción. Aplicación al hormigón. Parte 1. Radiación externa: índice de riesgo radiactivo. Cem. Horm. 945, 40-65.

Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüe, L.; Suárez, J. A.; Navarro, N. (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Construc. Build. Mat. 101 [1], 1105-1112. https://doi.org/10.1016/j.conbuildmat.2015.10.074

Alonso, M.M.; Suárez-Navarro, J.A.; Pérez-Sanz, R.; Gascó, C.; Moreno de los Reyes, A.M.; Lanzón, M.; Blanco-Varela, M.T.; Puertas, F. (2020) Data in Brief. 33, 106488. https://doi.org/10.1016/j.dib.2020.106488 PMid:33241096 PMCid:PMC7672271

Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A. (2005) Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation. J. Env. Rad. 82 [3], 321-324. https://doi.org/10.1016/j.jenvrad.2005.02.004 PMid:15885378

Chinchón-Payá, S.; Piedecausa, B.; Hurtado, S.; Sanjuán, M.A.; Chinchón, S. (2011) Radiological impact of cement, concrete and admixtures in Spain. Rad. Meas. 46 [8], 734-735. https://doi.org/10.1016/j.radmeas.2011.06.020

Gupta, M.; Kumar Mahur, A.; Varshney, R.; Sonkawade, R.G.; Verma, K.D.; Prasad, R. (2013) Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Rad. Meas. 50, 160-165. https://doi.org/10.1016/j.radmeas.2012.03.015

Kovler, K. (2012) Does the utilization of coal fly ash in concrete construction present a radiation hazard? Construc. Build. Mat. 29, 158-166. https://doi.org/10.1016/j.conbuildmat.2011.10.023

Ignjatović, I.; Sas, Z.; Dragaš, J.; Somlai, J.; Kovács, T. (2017) Radiological and material characterization of high volume fly ash concrete. J. Env. Rad. 168, 38-45. https://doi.org/10.1016/j.jenvrad.2016.06.021 PMid:27400654

Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, Ts.; MacKenzie, K.J.D. (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Int. 40, [10], 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157

Man-yin, W. T.; Leung, J.K.C. (1996) Radiological Impact of Coal Ash from the Power Plants in Hong Kong. J. Env. Rad. 30 [1], 1-14. https://doi.org/10.1016/0265-931X(95)00042-9

Turhan, Ş. (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J. Env. Rad. 99 [2], 404-414. https://doi.org/10.1016/j.jenvrad.2007.11.001 PMid:18082297

Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; Dragaš, J. (2017) Alkali-activated concrete with Serbian fly ash and its radiological impact. J. Env. Rad. 168, 30-37. https://doi.org/10.1016/j.jenvrad.2016.09.002 PMid:27686949

Puertas, F. (1993) Escorias alto horno: composición y comportamiento hidraúlico. Mater. Construcc. 43 [229], 37-48. https://doi.org/10.3989/mc.1993.v43.i229.687

Pellegrino, C.; Faleschini, F.; Meyer, C. (2019). Recycled Materials in Concrete. Chapter 2. Sustainability of Concrete. Modern Concrete Techonology Book 17. Routledge Ed. https://doi.org/10.1016/B978-0-08-102616-8.00002-2

Liapis, I.; Papayianni, I. (2015) Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing. J. Haz. Mat. 283, 89-97. https://doi.org/10.1016/j.jhazmat.2014.08.072 PMid:25261762

Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansión of cement mortars manufactured with landle furnace slag LFS. Mater. Construcc. 69 [334], e183. https://doi.org/10.3989/mc.2019.06018

Liu, J.; Yu, B.; Wang, Q. (2020) Application of steel slag in cement treated aggregate base course. J. Clean. Prod. 269, 121733. https://doi.org/10.1016/j.jclepro.2020.121733

Cooper, M.B. (2005) Naturally Ocurring Radioactive Materials (NORM) in Australian Industries- Review of Current Inventories and Future Generation. EnviroRad Serv. Pty. Ltd. ARPANSA. Melbourne.

Gijbels, K.; Iacobescu, R.I.; Pontikes, Y.; Vandevenne, N.; Schreurs, S.; Schroeyers, W. (2018) Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. Construc. Build. Mat. 184, 68-75. https://doi.org/10.1016/j.conbuildmat.2018.06.162

Argiz, C.; Reyes, E.; Moragues, A. (2018) Ultrafine portland cement performance. Mater. Construcc. 68 [330], e157. https://doi.org/10.3989/mc.2018.03317

Goldman, A.; Bentur, A. (1993) The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 23 [4], 962-972. https://doi.org/10.1016/0008-8846(93)90050-J

Instrucción de hormigón estructural (EHE-08) (2008). BOE 203. https://www.fomento.es/nr/rdonlyres/e20dffb7-fd75-4803-8ca4-025064bb1c40/68186/1820103_2008.pdf" (In spanish).

Soria Santamaría, F. (1983) Las puzolanas y el ahorro energético en los materiales de construcción. Mater. Construcc. 33 [190-191], 69-84. https://doi.org/10.3989/mc.1983.v33.i190-191.974

Robayo-Salazar, R.; Mejía de Gutiérrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191. https://doi.org/10.3989/mc.2019.06618

Ivanović, M.; Kljajević, Lj.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.; Nenadović, S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155 . https://doi.org/10.3989/mc.2018.00517

Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. (2005) Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem. Concr. Comp. 27 [2], 191-196. https://doi.org/10.1016/j.cemconcomp.2004.02.006

Skaropoulou, A.; Tsivilis, S.; Kakali, G.; Sharp, J. H.; Swamy, R. N. (2009) Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack. Cem. Concr. Comp. 31 [9], 628-636. https://doi.org/10.1016/j.cemconcomp.2009.06.003

Turhan, Ş.; Baykan, U.N.; Şen, K. (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J. Rad. Protec. 28 [1], 83-91. https://doi.org/10.1088/0952-4746/28/1/005 PMid:18309197

Turhan, Ş.; Gürbüz, G. (2008) Radiological significance of cement used in building construction in Turkey. Rad. Protec. Dos. 129 [4], 391-396. https://doi.org/10.1093/rpd/ncm454 PMid:17971346

Xhixha, G.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Caciolli, A.; Callegari, I.; De Bianchi, S.; Fiorentini, G.; Guastaldi, E.; Kaçeli Xhixha, M.; Mantovani, F.; Massa, G.; Menegazzo, R.; Mou, L.; Pasquini, A.; Rossi Alvarez, C.; Shyti, M. (2013) The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nucl. Chem. 295, 445-457. https://doi.org/10.1007/s10967-012-1791-1

Alonso, M.M.; Pasko, A.; Gascó, C.; Suarez, J.A.; Kovalchuk, O.; Krivenko, P.; Puertas, F. (2018) Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construc. Build. Mat. 159, 745-754. https://doi.org/10.1016/j.conbuildmat.2017.11.119

Maldonado-García, M. A.; Hernández-Toledo, U. I.; Montes-García, P.; Valdez-Tamez, P. L. (2018) The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars. Mater. Construcc. 68 [329], e148. https://doi.org/10.3989/mc.2018.13716

Pereira, A.M.; Moraes, J.C.B.; Moraes, M.J.B.; Akasaki, J.L.; Tashima, M.M.; Soriano, L.; Monzó, J.; Payá, J. (2018). Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Mater. Construcc. 68 [330], e153. https://doi.org/10.3989/mc.2018.00617

Gupta, A.; Gupta, N.; Shukla, A.; Goyal, R.; Kumar, S. (2020) Utilization of recycled aggregate, plastic, glass waste and coconut shells in concrete - a review. IOP Conf. Series: Mat. Sci. Eng. 804, 012034. https://doi.org/10.1088/1757-899X/804/1/012034

Kou, S.C.; Poon, C.S. (2009) Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Comp. 31 [2], 107-113. https://doi.org/10.1016/j.cemconcomp.2008.12.002

Espinosa, S.; Golzarri, J.I.; Gamboa, I.; Jacobsen, I. (1986) Natural radioactivity in Mexican building Materials by SSNT. Nuclear Tracks Rad. Meassu. 12, [1-6], 767-770. https://doi.org/10.1016/1359-0189(86)90699-0

García‐Díaz, I.; Gázquez, M.J.; Bolivar, J.P.; López, F.A. (2016) Characterization and valoration of Norm wastes for construction materials - Chapter 2. Manag. Haz. Wast. 13-37 (2016). Ed. INTECH. https://doi.org/10.5772/63196

Dvorkin, L.; Lushnikova, N.; Sonebi. M. (2018) Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results. MATEC Web of Confe. 149, 01012. https://doi.org/10.1051/matecconf/201814901012

Ngoc Lam, N. (2020) Eco-concrete made with phosphogypsum-based super sulfated cement. IOP Conf. Series: Mater. Scie. and Engi. 869, 032031. IOP Publishing. https://doi.org/10.1088/1757-899X/869/3/032031

IAEA. (2013) Radiation protection and management of NORM residues in the phosphate industry. Safety Reports Series 78. http://refhub.elsevier.com/B978-0-08-102009-8.00006-2/rf0225.

Kovler, K.; Dashevsky, B.; Kosson, D.S.; Reches, Y. (2017) US Patent. System and methods for removing impurities from phosphogypsum and manufacturing gypsum binder. US 2017/0022070A1.

Trevisi, R.; Risica, S.; D'Alessandro, M.; Paradiso, D.; Nuccetelli. C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Env. Rad. 105, 11-20. https://doi.org/10.1016/j.jenvrad.2011.10.001 PMid:22230017

Sanjuán, M.A.; Suarez-Navarro, J.A.; Argiz, C.; Mora, P. (2019). Assessment of radiation hazards of white and grey Portland cements. J. Radioanal. Nucl. Chem. 322, 1169-1177. https://doi.org/10.1007/s10967-019-06824-y

Sanjuán, M.A.; Suárez-Navarro, J.A.; Argiz, C.; Mora, P. (2020) Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. J. Radioanal. Nucl. Chem. 325, 381-390. https://doi.org/10.1007/s10967-020-07263-w

Raghu, Y.; Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B. (2018) Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J. Taibah Univ. Sci. 11 [4], 523-533. https://doi.org/10.1016/j.jtusci.2015.08.004

Allard, B.; Olofsson, U.; Torstenfelt, B. (1984) Environmental actinide chemistry. Inor. Chimi. Acta. 94 [4], 205-221. https://doi.org/10.1016/S0020-1693(00)88006-8

Plant, J.A.; Saunders, A.D. (1966) The Radioactive Earth. Radia. Protec. Dosi. 68 [1-2], 25-36. https://doi.org/10.1093/oxfordjournals.rpd.a031847

Sanjuan, M.A.; Argiz, C.; Alonso, M.M.; Suarez-Navarro, J.A.; Gascó, C.; Puertas, F. (2019) Natural radioactivity of Portland cement mortars made with granite sand. 15th International Congress on Chemistry of Cement (Prague).

Croymans, T.; Schroeyers, W.; Krivenko, P.; Kovalchuk, O.; Pasko, A.; Hult, M.; Marissens, G.; Lutter, G.; Schreurs, S. (2017) Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes. J. Env. Rad. 168, 21-29. https://doi.org/10.1016/j.jenvrad.2016.08.013 PMid:27554708

Frutos Vázquez, B. (2009) Estudio experimental sobre la efectividad y la viabilidad de distintas soluciones constructivas para reducir la concentración de gas radón en edificaciones. PhD Thesis E.T.S. Arquitectura. Universidad Politécnica de Madrid.

Publicado

2021-08-24

Cómo citar

Puertas, F. ., Suárez-Navarro, J. A. ., Alonso, M. M. ., & Gascó, C. . (2021). Revisión sobre residuos NORM, cementos y hormigones. Materiales De Construcción, 71(344), e259. https://doi.org/10.3989/mc.2021.13520

Número

Sección

Artículos

Datos de los fondos

Ministerio de Ciencia e Innovación
Números de la subvención BIA2016-77252-R

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>