Estudio de mezclas binarias y ternarias con cemento, cal hidratada y ceniza volante: análisis termogravimétricos, mecánicos y de durabilidad

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.346623

Palabras clave:

Cal hidratada, Cemento, Ceniza volante, Termogravimetría, Portlandita, Propiedades mecánicas, Microscopía electrónica de emisión de campo

Resumen


El uso de altos porcentajes de sustitución de cemento Portland por puzolanas puede provocar el consumo total de la portlandita. La investigación propone el uso de un sistema ternario formado por cemento Portland (PC), ceniza volante (FA) y cal hidratada (CH). Después de 180 días de curado, el mortero con un 50% de sustitución de PC por FA obtiene 65.9 MPa de resistencia frente a los morteros con un 20% de CH y control (100 PC) que obtuvieron 69.9 MPa y 76.7 MPa respectivamente; este comportamiento es muy positivo teniendo en cuenta que este mortero tiene un 50% menos de PC. El efecto de añadir la cantidad extra de cal hidratada tiene efectos en la durabilidad; se estudió la evolución de la carbonatación de los morteros con PC-FA y PC-CH-FA. La reducción de la velocidad de carbonatación fue del 37% para los morteros con CH respecto al mortero con PC-FA.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ayasgil, D.; Ince, C.; Derogar, S.; Ball, R.J. (2022) The long-term engineering properties and sustainability indices of dewatering hydrated lime mortars through Jacaranda seed pods. Sustain. Mater. Techno. 32, e00435. https://doi.org/10.1016/j.susmat.2022.e00435

Elsen, J.; Mertens, G.; Snellings, R. (2011) Portland cement and other calcareous hydraulic binders: History, production and mineralogy. Eur. Mineral. Union Notes Mineral. 9 [1], 441-479. https://doi.org/10.1180/emu-notes.2010.emu9-11

Andrew, R.M. (2019) Global CO2 emissions from cement production, 1928-2018. Earth Sys. Sci. Data. 11 [4], 1675-1710. https://doi.org/10.5194/essd-11-1675-2019

Sustainable development goals. United Nations Development Programme. Accessed January 9, 2023. Retrieved from https://www.undp.org/sustainable-development-goals.

Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-662. https://doi.org/10.1016/j.matdes.2011.11.043

Teara, A.; Shu Ing, D. (2020). Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Phys. Chem. Earth. 120, 102942. https://doi.org/10.1016/j.pce.2020.102942

Sun, X.; Zhao, Y.; Tian Y.; Wu, P.; Guo, Z.; Qiu, J.; Xing, J.; Xiaowei, G. (2021) Modification of high-volume fly ash cement with metakaolin for its utilization in cemented paste backfill: The effects of metakaolin content and particle size. Powder Technol. 393, 539-549. https://doi.org/10.1016/j.powtec.2021.07.067

Stefanović, G.; Ćojbašć, L.; Sekulić, Ž.; Matijašević, S. (2007) Hydration study of mechanically activated mixtures of Portland cement and fly ash. J. Serb. Chem. Soc. 72 [6], 591-604. https://doi.org/10.2298/JSC0706591S

Justnes, H.; Skocek, J.; Østnor, T.A.; Engelsen, C.J.; Skjølsvold, O. (2020) Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cem. Concr. Res. 137, 106192. https://doi.org/10.1016/j.cemconres.2020.106192

Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535-541. https://doi.org/10.1016/j.matdes.2014.08.022

Mira, P.; Papadakis, V.G.; Tsimas, S. (2002) Effect of lime putty addition on structural and durability properties of concrete. Cem. Concr. Res . 32 [5], 683-689. https://doi.org/10.1016/S0008-8846(01)00744-X

Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge S. (2020) Effect of nano-silica addition into high volume fly ash-hydrated lime blended concrete. Constr. Build. Mater. 253, 119205. https://doi.org/10.1016/j.conbuildmat.2020.119205

Filho, J.H.; Medeiros, M.H.F.; Pereira, E.; Helene, P.; Asce, M.; Isaia, G.C. (2013) High-volume fly ash concrete with and without hydrated lime: chloride diffusion coefficient from accelerated test. J. Mater. Civ. Eng. 25 [3], 411-418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596

Anjos, M.A.S.; Reis, R.; Camões, A.; Duarte, F.; Jesus, C. (2019) Evaluation of hydration of cement pastes containing high volume of mineral additions. Eur. J. Environ. 23 [8], 987-1002. https://doi.org/10.1080/19648189.2017.1327892

Fonseca, T.V.; dos Anjos, M.A.S.; Ferreira, R.L.S.; Branco, F.G.; Pereira, L. (2022) Evaluation of self-compacting concretes produced with ternary and quaternary blends of different SCM and hydrated-lime. Constr. Build. Mater. 320, 126235. https://doi.org/10.1016/j.conbuildmat.2021.126235

Luxán, M.P.; Sánchez de Rojas, M.I.; Frías, M. (1989) Investigations on the fly ash-calcium hydroxide reactions. Cem. Concr. Res. 19 [1], 69-80. https://doi.org/10.1016/0008-8846(89)90067-7. https://doi.org/10.1016/0008-8846(89)90067-7

Vigil de la Villa, R.V.; De Soto, I.S.; García-Giménez, R.; Frías M. (2017) Thermodynamic evaluation of pozzolanic reactions between activated pozzolan mix of clay waste/fly ash and calcium hydroxide. J. Mater. Civ. Eng. 29 [8], 04017065. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001940

Arandigoyen, M.; Bicer-Simsir, B.; Alvarez, J.I.; Lange, D.A. (2006) Variation of microstructure with carbonation in lime and blended pastes. Appl. Surf. Sci. 252 [20], 7562-7571. https://doi.org/10.1016/j.apsusc.2005.09.007

Arandigoyen, M.; Alvarez, J.I. (2007) Pore structure and mechanical properties of cement-lime mortars. Cem. Concr. Res. 37 [5], 767-775. https://doi.org/10.1016/j.cemconres.2007.02.023

Pacheco-Torgal, F.; Faria, J.; Jalali, S. (2012) Some considerations about the use of lime-cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Constr. Build. Mater. 30, 488-494. https://doi.org/10.1016/j.conbuildmat.2011.12.003

Sébaïbi, Y.; Dheilly, R.M.; Quéneudec, M. (2004) A study of the viscosity of lime-cement paste: Influence of the physico-chemical characteristics of lime. Constr. Build. Mater. 18 [9], 653-660. https://doi.org/10.1016/j.conbuildmat.2004.04.028

Sébaïbi, Y.; Dheilly, R.M.; Beaudoin, B.; Quéneudec, M (2006) The effect of various slaked limes on the microstructure of a lime-cement-sand mortar. Cem. Concr. Res. 36 [5], 971-978. https://doi.org/10.1016/j.cemconres.2005.12.021

Fourmentin, M.; Faure, P.; Gauffinet, S.; Peter, U.; Lesueur, D.; Daviller, D.; Ovarlez, G.; Coussot, P. (2015) Porous structure and mechanical strength of cement-lime pastes during setting. Cem. Concr. Res. 77, 1-8. https://doi.org/10.1016/j.cemconres.2015.06.009

Sangi-Gonçalves, H.; Penteado-Dias, D.; Castillo-Lara, R. (2022) Replacement of hydrated lime by lime mud-residue from the cellulose industry in multiple-use mortars production. Mater. Constr. 72 [347], e292. https://doi.org/10.3989/mc.2022.17721

AENOR. UNE-EN 197-1. Cement. Part 1: Composition, specifications and conformity criteria for common cements. (2011).

AENOR. UNE-EN 459-1. Building lime. Part 1: Definitions, specifications and conformity criteria (2016).

Rao, S.M.; Asha, K. (2012) Activation of fly ash-lime reactions: kinetic approach. J. Mater. Civ. Eng. 24 [8], 1110-1117. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000482

Payá, J.; Borrachero, M.V.; Monzó, J.; Peris-Mora, E.; Amahjour, F. (2001) Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem. Concr. Res. 31 [1], 41-49. https://doi.org/10.1016/S0008-8846(00)00434-8

Payá, J.; Monzó, J.; Borrachero, M.V.; Velázquez, S.; Bonilla M. (2003) Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes. Cem. Concr. Res. 33, 1085-1091. 33 [7], https://doi.org/10.1016/S0008-8846(03)00014-0

Soriano, L.; Monzó, J.; Bonilla, M.; Tashima, M.M; Payá, J.; Borrachero, M.V. (2013) Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem. Concr. Compos. 42, 41-48. https://doi.org/10.1016/j.cemconcomp.2013.05.007

Zhang, D.; Wang, Y.; Ma, M.; Guo, X.; Zhao, S.; Zhang, S.; Yang, Q. (2022) Effect of equal volume replacement of fine aggregate with fly ash on carbonation resistance of concrete. Materials. 15 [4], 1550. https://doi.org/10.3390/ma15041550 PMid:35208087 PMCid:PMC8877768

Jia, Y.; Aruhan, B.; Yan, P. (2012) Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period. Mag. Concr. 64 [2], 143-150. https://doi.org/10.1680/macr.10.00134

Zhang, G.; Peng, G.F.; Zuo, X.Y; Niu, X.J.; Ding, H. (2023). Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultra-high-performance concrete. Cem. Concr. Res. 167, 107130. https://doi.org/10.1016/j.cemconres.2023.107130

Gleize, P.J.P.; Müller, A.; Roman, H.R. (2003) Microstructural investigation of a silica fume-cement-lime mortar. Cem. Concr. Compos. 25 [2], 171-175. https://doi.org/10.1016/S0958-9465(02)00006-9

Manzano, H.; González-Teresa, R.; Dolado, J.S.; Ayuela, A. (2010). X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels. Mater. Constr. 60 [299], 7-19. https://doi.org/10.3989/mc.2010.57310

Izadifar, M.; Königer, F.; Gerdes, A.; Wöll, C.; Thissen, P. (2019) Correlation between composition and mechanical properties of calcium silicate hydrates identified by infrared spectroscopy and density functional theory. J. Phys. Chem. C. 123, 10868-10873. https://doi.org/10.1021/acs.jpcc.8b11920

Ramesh, M.; Azenha, M.; Lourenço, P.B. (2019) Quantification of impact of lime on mechanical behaviour of lime cement blended mortars for bedding joints in masonry systems. Constr. Build. Mater. 229, 116884. https://doi.org/10.1016/j.conbuildmat.2019.116884

Adesina, P.A.; Olutoge, F.A. (2019) Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. J. Build. Eng. 25, 100804. https://doi.org/10.1016/j.jobe.2019.100804

Acharya, P.K.; Patro, S.K. (2015) Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr. Build. Mater. 94, 448-457. https://doi.org/10.1016/j.conbuildmat.2015.07.081

Sisomphon, K.; Franke, L. (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem. Concr. Res. 37 [12], 1647-1653. https://doi.org/10.1016/j.cemconres.2007.08.014

Publicado

2023-07-10

Cómo citar

Lorca, P. ., Soriano, L., Borrachero, M. ., Monzó, J., Tashima, M., & Payá, J. . (2023). Estudio de mezclas binarias y ternarias con cemento, cal hidratada y ceniza volante: análisis termogravimétricos, mecánicos y de durabilidad. Materiales De Construcción, 73(351), e316. https://doi.org/10.3989/mc.2023.346623

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

<< < 1 2